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1. Introduction.

Since the

demise of the eductive refinement program of game theory, hope has arisen that

dynamic learning models might be able to resolve the predictive impotency of

equilibrium theories. The approaches to learning in games include:

evolutionary game theory and replicator dynamicsl, reinforcement learning and

belief 1earning2, and Rule Learning3. Given the prolifefation of learning

models in the literature, there is now a critical need to apply model

selection methodolgies. There have been a number of studies in the literature

that compare models of learning; however, none of these studies is

sufficiently comprehensive ., 4

We embrace the instrumentalist position [Friedman (1953)] that the

ultimate test of a model is its ability to predict behavior. Accordingly, we

bresent a "horse race" comparing the in-sample and out-of-sample predictive

performance of a group of learning models on a large data set. The models are

fitted using maximum likelihood methods, and then several measures of

performance are computed (maximized likelihood values, and mean squared

errors)

For example,

consider marketing, which involves multiple ‘stages with substantial
information sharing among the participants between stages through trade

magazines and word-of-mouth communciation., The Pairwise matching protocol in

which each player’s information is limited to the pair of choices
corresponding to his own sequence of matches is not well-suited for these

applications. 1In contrast, this paper focuses on data from experiments in



which the participants receive information about the whole population of

players rather than just one coplayer.

This paper also focuses exclusively on models of population dynamics

rather than individual player dynamics for several reasons. First, in

economic applications such as marketing, the payoff function is the discounted

present value of revenue minus cost, which is invariant to variations in

individual behavior that leave the aggregate payoff unchanged. Thus, a model

of population dynamics would suffice, and individual data may not be readily

available. Hence, there is a need for a theory of population dynamics.

Second, Stahl (ZOOOb) shows that aggregating up from individual player
dynamics does not provide better predictions of population dynamiés.5

Third, when a player faces a sequence of co-players drawn from a large

population of potential co-players, decision theory tells us that it is

sufficient for the player to have a belief about the potential choices of

those co-players: a subjective probability assessment of the likelihood of the

potential action choices of the co~p1ayers. Further, if the likelihood of

these co-player choices changes over time, then it is sufficient to have a

consistent method of updating one'’s subjective probability assessment. It is
not necessary to be able to track the choices of any specific co-player. 1In

other words, for a rational player, it is sufficient to have a subjective
belief about the distribution of choices in the population of co- players and a

model of the dynamlcs of that populatlon distribution.

In section 2, we present the action-reinforcement learning models that are

investigated. By "action-reinforcement learning", we refer to the class of

dynamic models in which the objects of reinforcement are the actions available

to the players in a one-shot game. ‘Specifically, we present population

versions of (i) replicator dynamics, (ii) Roth-Erev reinforcement learning,



likelihood techniques for alil models, providing widely accepted criteria for

model comparisons. 1Ip section 4

, but in the

when the game changes, the

learning model must be revised and reinitialized, Yet, researchers who are

university professors know very well that what we teach (and hopefully

students learn) are ways of thinking about problems: high level algorithms for

Trecognizing essential features and solving problems.

Also, in contrast to standard game theory, these models assume that

Players are rather unsophisticated. At one exXtreme,

Players’ minds. Most of the learning dynamics ignore much of the: information

that human players might be assumed to have available: e.q. the history of

play and knowledge of the game.

(a)‘hypothetical payoffs from actions they could have chosen but did hot, (b)

the best reply to the recent past, and (c¢) iterates of the best reply mapping.



There is evidence that people do use all available information.’
In this spirit, the Rule Learning models of Stahl (1996, 1999, 2000a-b)

hypothesize a rich space of behavioral rules which players can learn based on

~ performance feedback. These rules span several levels of sophistication

(level-n bounded rationality, as well as herd behavior and Nash behavior).
There is growing evidence in favor of Rule Learning [Nagel (1995), Ho, et al

(1996), Duffy and Nagel (1997), Stahl (1996, 1999, 2000a-b), and Sosino, et
al (1998)].

In section 5, we present a population version of Rule Learning that.nests

the LBRIAE model which is the best of the action-reinforcement models. Rule
Leatning adds three features to the LBRIAE model: (i) the use of additional

information (as embodied in additional rules), (ii) diversity in the

population, and (iii) performance feedback on the probability distribution of

rule use in the population. By virtue of this neSting, we can analyze the

contribution of each feature. 1In section 6, we present the econometric

analysis of this Rule Learning model, and show that each feature is

statistically significant. Conclusions are drawn in section 7.

2. Canonical Action-Reinforcement Dynamics for Finite Human Populations.

2.1. Replicator Dynamics for Human Populations.

Since replicator dynamics [e.g. Hofbauer and Sigmund, 1988] is perhaps the

best known model for population dynamics, it is natural to begin our inquiry

with it. The basic biological population model deals with a population of J

types, with n;(t) denoting the number of type j's in period t, and a total
population of n(t) in period t; the proportion of type j's in period t is

denoted pj(t) = nj(t)/ﬁ(t). The biological interpretatiénvis that each type



is encoded in some set of genes, and that the

because of differential survival (or "fitness") rates, The Teproductive rate

of a type depends on the population distribution of types and can be

represented by a Strictly positive JIXJ matrix U, so the net growth rate of

type j is e;'Up(t), where e; € 7

is the column vector with 1 in the J*® column

and O elsewhere, Then, the number of type j's at time t+At ig given by

0y (EHAL) = n (t)[1 4+ e;'Up(t)at] | (1)

Letting the time interval, At, go to 0, the continuous-tige version of

replicator dynamics can be derived asg

B; () /p,(t) = [e; - p(t)] Up(e)

cess of ‘ideasg (or "memes")

Under thisg interpretation, let o(t) denote

the underiying choice probability for a randomly drawn Player frop the

bopulation; then, €q(2) becomes

@ (t) /o, (t) = Ales - o)1 up(ey | (3)

where we introduce a free scaling‘parameter, B >0, since (unlike biological



models) there is no reason that the game payoffs necessarily translate into

realistically scaled growth rates.

While memes offer a more palatable interpretation of replicator dynamics

for human populations, we must now face the problem that while we can observe

the frequency distribution of choices, p(t), we cannot observe the true

underlying probabilities, ¢(t), in a finite population.8 It follows that we

can only specify the likelihood of the observed frequencies, so maximum

likelihood procedures are natural.

To derive a version of eQ(3) that can be applied to discrete-time data, we

integrate eq(3) over At, yielding

Inle;(t+At)] =~ In[e;(t)] + fe;'Up(t)At + a, , 31

where a,

‘is a scalar (independent of j) which is determined by the requirement

that 3 p;(t) = 1; w.l.0.g. we can choose time units so At = 1. Solving
N

eq(3’) gives the "logit form" of discrete-time mental replicator dynamics:

p;(t) = exp[w;(£)1/% exp[w(t)] , for t > 1, (4a)

and w;(t) wy(t-1) + Be;'Up(t-1) , for t > 1. (4b)

We interpret wi(t) as the strength of action J in period t. Since

exp{Be;'Up(t)} > 0, the ®;() quantities defined by eq(4a) are always strictly

positive - hence proper probabilities.

To complete the mental replicator model we must specify the initial

conditions for périod 1y w(l)., To let w(l) be a free variable would add J-1

parameters to be estimated from the data reducing the degrees of freedonm



be a bad fit of the data and could bias the estimate of B. The second

alternative ig to roll back insufficient reasoning one period, and use eq(4b)

for t = 1, taking.p(O) to be uniform and w(0) = 0, For notational

convenience, we let p?

p;(t) = f(“@(t))/iif(Wk(t))

where f() is a pPositive monotonic function. The tWo most common functional

forms are (1) the power form in which f(x) = x*, for some Strictly positive

scalar ); and (ii) the logit form in which f(x) = exp(x). The only power-form

specification considered in this paper will be the Erev-Roth model . 9

The "Law of Effect" dynamic specifies how Propensities evolve:

wi(t) = fw,(t-1) + g(t-1) , for t > 1, (5)



where g. is the "reinforcement function", and 4 e 0,1] is an inertia
&;

variable that discounts past propensities. Initial conditions specify w(l).

Different versions of this generic propensity-based reinforcment model arise

from different specifications of g(), such as in the Erev-Roth model and the

Camerer-Ho EWA model. Then, lettingﬁa =‘1, g;(t-1) = ﬂej’Up(t-l), eq(5)

becomes identical to replicator dynamics, eq(4). Thus, the.propensity.model

is a generalization of mental replicator dynamics.

Given § < 1, eq(5) is equivalent to the standard partial adjustment

dynamic applied to propensities: To see this, define y(t) = g(t-1)/(1-6), so

eq(5) can be rewritten as

W(t) = 6w(t-1) + (1-)y(t)
' ' (5"
= w(t-1) + (1-9)[v(t) - w(t)]
where 7(t) is called the "target Propensity" towards which a partial
adjustment is made.
Nerlove (1958) showed that when y(t) is a linear function of p(t-1), say

T[p(t-1)], then eq(5') also describes the dynamics of an adaptive expectations

model in which the current propensity is a complete adjustment to the target

Propensity based on the expectation of p(t):

w(t) = T(E[p(t)[t-1]) , for ¢ » 1, (6a)

and

E[p(t)|t-1] = FE[P(t-1)]t-2) + (1-6)p(t-1), for t > 1. (6b)

Then, w(t) = fw(t-1) + (l-ﬁ)P[p(twl)] for t > 1, which is equivalent to

eq(5'). Thus, the generi¢ propensitynbased reinforcement model (given 6 < 1)

is equivalent to the standard partial adjustment model, which (given that y(t)



This adaptive éXpectations model ig often referred to as "belief learning™

[e. g&. Cheung and Friedman (1994) and Camerer and Ho (1997)]. For instance,

if T(p) = ﬁUp, then eq(6a) defines Propensities ag scaled expected utilities.

Further, 1n the logit- form, the choice probabllltles ©, can be interpreted ag

logit best- replies to beliefs given by adaptive e€Xpectations,

2.2.1 Erev-Roth Reinforcement Learning.

" Roth and Erev (1995) put forth a vefsion of

learning that applies to individuals,

& (5) = (L-3mp; )y () + pycey : (7a)
where‘ l
n U, _
yi(t) = ( — €;'Up(t) - = . p(t)] » and y(t) = P(t)y(t) |, (7b)
n-1 n-1 _
and

P(E) = p(t-1) + b'max(y(t-1),0} + b'min{y(t-1),0) (7¢)

and i = p/(J- 1) with # € [0,1) is a scalar "spillover" Parameter.

Eq(7a) defines a reinforgemént function consisting,of two components, The

first is the "subjective reward", yJ(t)



10

expectation process with b* < b~. The second component is the population

.average subjective reward y(t). The reinforcement of action j is roughly j’s
share of the population average subjective reward, plus a spillover portion

(B) of the avérage subjective reward in the whole population.

Then, the population choice probabilities are defined by

‘@j(t) = Wj(t)/Z&wk(t) , and (8a)

wi(t) = max{ﬂw&(t-l) + g;(t-1) , 9} , (8b)

where 7 = 0.0001 is a fixed parameter to avoid boundary problems.
For initial conditions, Erev-Roth specify the uniform distribution for
period 1, and use eqs(7 and 8) for t > 1, with wi(1) = Su/J and p(l) = Py,

where u is the mean payoff p®'Up® of the game. This population version of

the original Erev-Roth model has 6 parameters (6, p, b, b*, §, P1).

An alternative in the spirit of section 2.2 is to apply the principle of

insufficient reasoning to period O, taking w;(0) = Su/J, p(0) = p%, and p(0)

= poﬁ; then using eq(7a,b) to determine g(0), and using eq(8) and eq(7c¢)

to determine w(t) and p(t) respectively for t > 1. This version of the Erev-

Roth model also has 6 parameters: (6, p, b, b+, s, p_o).12

2.2.2. The Experience Weighted Attraction Model.
Camerer and Ho (1996) put forth an innovative propensity-based
reinforcement model that combines several features of the Erev-Roth

reinforcement learning and belief learning models. An advantage of the

Camerer-Ho model is that by restricting certain parameter values, a number

of nested models can be tested, Their EWA model is an individual learning



Camerer ang Ho call "attractions",

dynamic:

I

w;(t) {BN(t-l)wj(t-l) + g (t-1)) /(e
(9)
where g;(t) = ae;'BUp(t) + (1-a)pj(t)ﬂ[ej’Up(t)n/(n-l) - I%j/(n~l)]

3

NCEY = aN(t-1) + 1 | apg N(0) = N,.

The parameter @ is the the probability that an individual evaluates the past

Performnce of all actions; Camerer and Ho call thig the "imagination
Parameter" Notice that when o = 0, the last term of eq(9) is similar to the

reinforcement function of Erev-Roth, eq(7), sans the dspiration level ternm

p(t) and the spillover effect (%), and when g = 1, eq(9) Tesembles the Luce

Propensity-baged model, eq(5).

The N() term is called the "experience weight", 1f N, < 1/(1-y) ang Y e

(0,1), then N(t)/N(t+l) declines, Putting legg weight on ney evidence ag time

basses (the power law of Practice), ang vice versg, -On the other hand, if Y =

0 or v = (No-l)/NO, then N(t) ig cbnstant for a1 t, and since Ny and 8 are

then not Separately identifiable,

For initial conditions, Camerer ang Ho 1let {wg(l)} be free Parameters.

specifying w;(0) =0 for al1 J and pP(0) = P%, and using éq(9) for period 1.

Thus, the logit form of EWA dynamics hag five Parameters ip all: (g, @, B, v,



12

and Nj).

2.3. Logit Best-Reply Dynamics.

As in Kandori, Mailath and Rob (1993), suppose that with probability & the
individual sticks to the action mostly recently played, and with probability
1-6 the individual evaluates the performance of all the sctions and switches
to the action that appears to be the best reply to the recent past. In other
words, the crucial state variable defining the dynamics is the action most
recently chosen; if a player.chose action j, then we consider him a "type j".
A type j player is true to his type or becomes the type corresponding to the
apparent best reply. Further, suppose that the apparent best reply is given
by the logit best-reply function.l4 These assumptions lead to the following
two-parameter Logit Besp-Reply with Inertia (LBRI) model:

@(t) = op(t-1) + (1-8)b[p(t-1),8]

, for t > 1

b

(10)
where b;(p,B) = eXp(ﬂng)/[Zk exp (BUxp) ]

is the logit best-reply function with precision parameter B, and p(0) = po,

Naturally, the inertia parameter 6 is confined to [0,1]. Because of the

properties of b(+,B) for large values of B, this dynamic can exhibit periodic
behavior as well as chaotic behavior. For smaller values of g, b(,B8) tends to
the uniform distribution, which represents a very noisy evaluation.process.

An unfealistic feature of this LBRI model is the implicit assumption that
last period’s frequency distribution of choices is the Player’s forecast of

next pericd’s, Typically, one can reject this static forecasting model in

favor of an ARl model: E[p(t)lt-l] =
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a(t;8) = 8q(t-1;4) + (1-8)p(t-1), (11)

starting with q(0;8) = P(0) = p%. Ag a forecasting model, eq(ll) often fits

empirical data quite well, and will thereby serve as a useful non-learning (or

mindless) benchmark.

Combining adaptive expectations with the logit best-reply dynamic by

substituting q(t-l;ﬁ) for p(t-1) in €q(10), we have a three-parameter Logit

Eest-Réply with Inertia and Adaptive Expectations model:

©(t) = 6q(t-1;6) + (1;a)b[q<t-1;o>,ﬁ] , for t > 1. (12)

For brevity, we will refer to eq(l1-12) as the LBRIAE model. The adjustment

parameters § and 6 are naturally confined to [0,1], while the Precision

parameter B is assumed to be positive, Note that when ¢ - 0, eq(1l2) reduces

to eq(10), because adaptive expectations become instantaneous.

herd behavior with inertia. That is, e€q(ll) describes the evolution of'

beliefs, to which a fraction 1-6 of the population choose a logit best

reply, while the remaining fraction 6 of the population

When 6 = 0,
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3. The Experimental Data.

As argued in the Introduction, we believe that it is important to test

learning theories in environments with substantial population feedback betwegn

learning trials. Further, to guard against overfitting the models to

unrepresentative samples, we choose data involving a variety of symmetric

normal form games: specifically, data from two different experiments, both

using binary lottery games.l6

The first experiment consisted of four sessions, each with two runs of 15

periods each and one (of four) symmetric 5X5 game in each run. The payoff

matrices are given in Appendix A. Each matrix was constructed to have a

unique (pure-action) Nash equilibrium, and the distinct first-period level-1

and level-2 behaviors, because these features are most likely to "stress-test"

the learning theories. There were 22-94 participants in each session (all

inexperienced). For more details, see Stahl (2000a). There was'convergence

to the Nash equilibrium in only two of these eight runs, so this data set has

"rich" out-of-equilibrium dynamics.

N

- The second experiment consisted of four sessions, each with two runs of 12

periods each and one symmetric 3x3 game in each run. The payoff matrices are

given in Appendix A. The game in the first run of each session had multiple

Nash equilibria for the purpose of investigating selection theories [see

Haruvyvandetahl, 1998]; two of the second run games have no symmetrlc pure—

strategy Nash equilibria, and so convergent behavior was not anticipated over

the 12 period horizon. There were 24-25 participants (all inexperienced) in

each session.

For both experiments, in each period each participant was matched with the.

n-1 other participants and was given the history of choices of those n-1 other

players. The binary lotteries were not resolved until all periods of both



4, Econometric Comgarisons.

in other words, one

Generally,'in our

S0 not Surprizingly

this homogeneity assumption can be statistically rejected, Notwithstanding

mis-specifications regarding.homogeneity, we are keenly interested in the

at time t ip "run rv, Then
probability vector ¢ (t). Hence,

Proportional to

HR®le®] = 1 og m® (13)
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by taking the product over all 16 runs. Let LL denote the logarithm of this

total likelihood value.

Before estimating the models of Section 2, it is worthwhile presenting

several benchmarks for the log-likelihood (LL) values on our data. The
completely uninformative model (equal probable outcomes) has LL = -7086.77,
while a one-parameter logit Nash equilibrium model has LL = -6660.24. We will
see that all the learning models do substantially better. At the other

extreme, the best a model could do is predict ¢(t) = p(t), in which case LL =

-4295.95.

For each model, the log-likelihood function for the entire pooled data set

is maximized with respect to the parameter values. As a way of separating out

the first period effects from the dynamic effects, we also compute the LL

value for all but the first period of each run. As another measure of fit, we

compute the Root Mean Squared Error (RMSE) : the Euclidean distance between the

empirical choice frequences, p(t), and the predicted choice probabilities,

©(t), summed over all periods. This is a "one-period-ahead” quadratic scoring

measure: 17 i.e. the period t forecast is based on the actual data from period

t-1 in contrast to a simulated data path from period 1 to period t-1.

We considered using the Pearson Chi-square measure of goodness-of-fit (PCS)

given by

2, 2, [05(8) - np,(£) 12/np;(t) . (149

However, PCS can be unreliable for small sample sizes. A rule of thumb is

that each cell should have at least 5 observations. However, in many of our

games there are many periods in which this criterion is not satisfied: e.g.

when the players converge to an equilibrium, there will be many actions that



17

are seldem chosen in later periods, Therefore, we do not Teport PCS measures

here,

Similarly, T-period-ahead likelihood Measures are unreliable for small

sample sizes, For instance, we could compute the likelihood of the actual

data in the final period (T) of run r conditional op only the éstimated

parameters by integrating out the history of Play for periods 1 to T-1:

Liln (D] = [...f ntjl L (n)dn, (T-1)x. . .xdn (1) (¥

approximating this integration by simulating Paths of play. With J actions

and N participants, there are M = (N+J)§/(N!J!) possible realizations of n.(T);

€.g. M=3276 when N=25 and J=3, Thus, eq(lﬁb defines a probability distribution

with M-1 degrees of freedom. Clearly,

likelihood measures here.

4.1 The Models of Section 2.

The results of maximunm likelihood estimation of the seven base'models of

section 2 are given in Table T. Note that the 1, values are roughly

increasing as one moves down the Table. The logit best

-of-prediction value. EWA

e horse Tace. It is also

notéworthy that the mindless AR] model, eq(ll), does better than mental

replicator dynamics, However, model comparisons are of dubious value unless
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all the models being compared are on an equal footing with regard to

errors/deviations.

4.2 Models with Trembles and/or Mutations.

Trembles are transient departures from the underlying choice

probabilities, @(t), that affect only the current period choices and not the

undeflying propensities, w(t). To model trembles; we keep the dynamics on

w;() and ®;() unchanged from section 2, and we define post-tremble choice

probabilities, p¥(t), as

PHE) = (1-8)p,(t) + £/7 | (15)

where ¢ € [0,1] is a free parameter,

Mutations, on the other hand, are permanent departures and hence can bhe

modeled as changes in the underlying propensities, w(t). For the logit form

of the EWA model, mutations are already incorﬁorated by virtue of the § and B

parameters, which attenuate the log-likelihood ratios among the available

actions, Similarly, the & and B parameters of the LBRI and LBRIAE models

implicitly incorporate mutations, so no further modification is needed.

However, the logit form of the mental replicator dynamics, eq(4), does require.

some modification to incorporate mutations. 1In the spirit of the other logit

forms, it is natural to do this by introducing an inertia parameter f, so

wy(t) = fu;(t-1) + Be,'Up(t-1) . )

This modification makes mental replicator dynamics equivalent to the logit

form of propensity-based reinforcement, eq(5), with g(t) = BUp(t-1). Eq(4')
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is also equivalent to the logit quantal response 1

earning model adopted by

Anderson, et, al. (1997). It is also a special case of EWA dynamics, eq(9),

when o = 1, v = 0, and n = w.

Square tests).  We Teport in Table II, the "beggn

Mutations). Withour exception, all] learning models in Tab]e IT outperform the

mindless AR] model witrh trembles -

We also teport in Table IT 4 four-parameter Version of the logit EwA model
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"w/o EW" in which the experience weights N(t) =1 for all t, which reduces the

set of free parameters to (6, a, B, and s).lg This restriction leads to a

decrease in the maximized log-1likelihood value of only 0.43, which is clearly

statistically insignificant, and, therefore the restricted version is much

preferred,

4.3 Out-of-Sample Prediction.

A requirement of a successful empirical model is that it be capable of

predicting behavior both in-sample (Table II) -and out of sample. With a large

data set, one can select a holdout sample to use for forecasting in numerous

ways. To provide a robust test, we selected four different holdout samples:

the first (second, third and fourth) sessions of each data set. Thus each

holdout sample contains 25% of the 5x5 game data and 25% of the 3x3 game data.

The residual 75% of the data is used to estlmate the model and those parameter

estimates are used to forecast the population behavior for the holdout sample.
Each holdout sample not only involves completely different subjects than the
residual data but also different games or order of games (see Appendix A).

Three measures of prediction success were computed: (i) the log-likelihood

of the holdout data given the parameter estimates, (ii) the log-likelihood

excluding the first period of each Tun, and (iii) the root mean squared error of

the forecast. Table III gives the measures aggregated for the four holdout

samples. The log-likelihood values are simple sums, while the RMSE measure is

an average over holdout samples. These results reinforce those of Table II.
4.4 Model Selection.

As a basic model selection principle, if model A has a higher likelihood

value both in-sample and out-of-sample and entails no more parameters than
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model B, then we prefer model A over model B. We note that the preference

sometimes encountered for a structual model over a reduced

and the premise of our selection

Principle is that A performs better than B out-of-sample, so a preference for

B over A cannot be justified,

From Tables IT and IIT, we can readily reject mental replicator dynamics,

on the grounds that by the LL values, it ig astronomically less likely to have

produced the data than the simple three-parameter LBRI dynamic. Ve can also

respectible 0.829. Both in~sémp1e and out-of-sample, the LBRIAE model

performs better than the four-parameter EWA model on all measures, Therefore,

according to our model selection Principles, we declare the winner of the

horse race to be the LBRIAE model,



22

errors for the models of Table II. We note that most all the parameters are

estimated fairly accurately; the one exception is b* in Erev-Roth

reinforcement dynamics. With bt insignificantly different from zero, the

aspiration level can never increase, and (given b~ = 1) it will decrease

whenever actual payoffs fall below the aspiration level, which it does in many

sessions since the initial asperation level is roughly the average payoff of

the game.

The fact that the experience weights were found to be iﬁsignificant in the
six-parameter EWA model but that the imagination parameter a is Strongly.
significant reveals that the real contribution of the EWA model is this
imagination parameter. Without the experience weights, the EWA model is
equivalent to a logit propensity-based model with imagination.

We tested the hypothesis that o = 0 (i.e. that only the most recently

chosen action is reinforced), and found that the LL value decreased by 271.59;

since twice this difference is distributed chi-square with one degree of

freedom, we overwhelmingly reject that hypothesis. 1In other words, we

strongly reject the Erev-Roth assumption that actions not chosen are not

reinforced.

To test the hypothesis that q = 1 (i.e. that all actions are reinforced),

we merely need to compare the LL value for the EWA model with the LI, value for

logit mental replicator dynamics. The latter is worse by 208.66; so we

overwhelmingly reject that hypothesis. In other words, the simple belief-

learning model with logit best- replys and the quantal-response learning model

[Anderson, et. al.] are strongly rejected in favor of the EWA model.

We also see that'setting @ = 1 results in an increase in the estimate of

the inertia parameter # from 0.3269 (in the EWA model) to 0.6757 (in the logit

replicator model). This suggests that a substantive effect of the o parameter



(l-a)p(t-l) to the law of motion, eq(9). 1In contrast, recent history enters

the logit replicator model only through fw(t-1) which is Proportional to

fo(t-1) and correlated with fp(t-1). Evidently, the EWA model does at better

Jjob of incorporating history than the logit replicator mode] . Moreover, thig

strongly rejected B = «; in other words, the exact best

To test for no herd behavior in the LBRIAE model (i.e. § = 0), we merely

need to compare the LL value for the LBRIAE model with the LL value for logit

mental replicator dynamics. . The latter is worse by 220.21; so we

overwhelmingly Teject that hypothesis.

Y compare the LI, value with

that of the AR1 model. The latter is worse by 297.20; so we overwhelmingly

reject that hypothesis. 1p other words, both herd behavior and logit best-



substantially larger than the analogous parameter in the EWA model and the

logit replicator model ; evidently, by incorporating trends in the data

specifically as additive herd behavior, the remaining population appears to be

fairly accurate best-repliers to that trend. Further, the trend (or herd)

part of the LBRIAE model Tesponds rather quickly to new data: the weight on

current observations is (1‘3) = 0.7493, 1 contrast, the mindless AR1 model

is less responsive: (1~3) = 0.5980.

Recalling that LBRIAE reduces to LBRI when g — O, the estimate § = 0.251

with a standard error of 0.028 demonstrates that g is strictly positive

Further, the likelihood ratio test strongly Trejects the LBRI model in favor of

the LBRIAE model. The estimated tremble pParameter 2 = 0.076 (and 0.053) ig

modest but vital in Preventing erroneous near-zero probability predictions,

5. An Improved Population Rule Learning Model.

In this section we pPresent a revision of the population Rule Learning

model of Stahl (2000b) that eéncompasses the LBRIAE model and fits the data

better than the former model. First, instead of incorporating herd behavior

4s an evidence-hased rule, herd behavior is incorporated in the partial

adjustment framework of the LBRIAE model]. Second, since (as reported in

section 4) we found that modelling trembles makes a very significant

contribution to the fit of the data, we introduce an additional parameter for

the probability of using the tremble rule in the first period.

5.1 The Rule Learning Framework.

A'beﬁévioral rule is a mapping from information Qt to A(A), the set of

probability measures on the actions A, Forfthebpurposes of Presenting the



abstract model, let P € R denote a generic behavioral rule

behavioral rules R;

information qt.
The second element in the ‘model is a Probability measure over the rules:

©(p,t) denotes the probability of using rule p in period t. Because of the

non-negativity restriction on probability measures

o(p,t) = éxp(w(p,t>/[fexp<w<x,t>dx1 . (16)

p(t) = fR P(O%)dp(p,t) . (17)

wip,t+l) = Bw(p,t) + Bip(Q")UPt | for t > 1 , (18)

where By >0 is a scaling parameter.

Given @ space of rules R and initial conditions w(e,1), the law of

motion, eq(18), completely determines the behavior of the system for all t >
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1. The remaining operational questions are (i) how to specify R, and (ii) how

to specify w(-,1).

An attractive feature of this general model is that it encompasses a wide

variety of learning theories. For instance, to obtain replicator dynamics, we

can simply let R be the set of J constant rules that always choose one unique

action in A for all information states. Fictitious play and Cournot

dynamics can be seen as very special cases in which R is a singleton rule
which chooses a (possibly noisy) best-response to a belief that is a

deterministic function of the history of play. Moreover, the general model

can include these constant rules, best-response rules and other rules.

5.2. The Family of Evidence-Based Rules.

Our approach to specifying the space of rules is to specify a finite
number of emplrlcally relevant discrete rules that can be combined to span a

much larger space of rules. 1In Stahl (1999), the family of "evidence-based"

rules was introduced as an extension of the SW95 level-n rules, Evidence-

based rules are derived from the notion that a player considers evidence for
and against the available actions and tends to choose the action which has the
most net favorable evidence based on the available information.

The first kind of evidence comes from a "null" model of the other players.

The null model provides no reason for the other players to choose any

particular strategy, so for the first period of play by virtue of insufficient

feason, the belief is that all strategies are equally likely. The expected

utility payoff to each available action given the null model is ¥1(Qt) = UpO.

We interpret j as "evidence" in favor of action i stemming from the null
p Y1J g J g

model and no prior history.

For later periods (t > 1), the players have empirical data about the past



choices of the other players.

distributed-lag forecasting.

given by eq(1ll). The exXpected utility pPayoff given this belief ig v.(0F;8) =

Uq®(8). We can interpret ¥15(Q%;6) as "level-1" evidence in favor of action N

stemming from the null model and prior history ht,

The second kind of evidence is based on the SWI5 "level-2n player who

‘believes all other players are level-1 Players, and hence believes that the

distribution of Play will be b(q*(8)), where b(qf(ﬁ)) € A(A) puts equal

Probability on all best responses to q*(4) and zero Probability on all

inferior responses., The expected utility conditional on thisg belief is

¥a(Qt;68) = Ub(q®*(8)). We can interpret Y2;(Q%;8) as "level-2n evidence in

favor of action i.

model. Letting p™ denote a Nash equilibrium of G, ¥3 = Up™ provides yet

another kind of evidence on the available actions. Based on Haruvy and Stahl

(1999), for games with multiple Nash equilibria, we define the evidence to be

the average of Y3 over all the Nash equilibrig equally weighted,

So far we have defined three kinds of evidence: v = {y1, v,, ¥3}. The

next step is to weigh this evidence and specify a Probabilistic choice

function. Let Vg 2 0 denote a scalar weight associated wi

define the weighted evidence vector:

y(@Qtv,6) = Y(Qt;6)v (19)

where v = (vy, Yz, V3)'. Note that the rules Spanned by §(Qt;u,€) can be

viewed as a four-dimensional space of SW9s "worldly" rules.

We assume that the player assesses the weighted evidence with
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some error or idiosyncratic additions, and chooses the action which from

his/her perspective has the greatest net favorable evidence. There are many

ways to go from such a weighted evidence measure to a probabilistic choice

function. We opt for the multinomial logit specification because of its

computational advantages when it comes to empirical estimation, Hence, the

probability of choosing action j is

pycativ,6) = exp[§j(ﬂt;v,9)1/228XP[§3(9t;V,9)] . (20)

Note that, given the four-dimensional Parameter vector (v,8), eq(20) defines a

mapping from Qt to A(A), and hence is g behavior rule as defined abstractl
Pping ¥

above. By putting zero weight on all but one rule, €q(20) defines an

archetypal rule - one for each kind of evidence corresponding to the

underlyingimodel of other players. Eq(19) generates the space of rules

spanned by these archetypal rules.

5.3 Herd Behavior

behavioral rule: specifically, with probability § the player repeats his/her

choice propensities from last period q*!, and with probability (1-6) the

player mimics the population distribution of choices, pt, Letting ¢ range

over [0,1] generates a one-dimensional subspace of herd rules, and experience

can affect the distribution of 6 in the population. Let py(8) denote a. herd

behavioral rule, so when using eq(17) the probability of using this rule isg

denoted by P(pn(8),t).
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5.4 Initial Propensities

P01 = -0.5000,0)-(3,7) 202 :

where “(u,ﬁ)-(;,g)” denotes the distance between

the distribution (V,8), and o2 is the varia

P(,0,1) = exp(ww,e,i>/[fexp<w<x,1>dx], (21b)

(22a)

Then the initig]l

B(py(8),1) = eXp(W(Ph(ﬁ),1)/[feXP(W(Ph(X),1)dX]- (22b)
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Further, in keeping with the notation of the LBRIAE model we Introduce a

single variable & to denote the initial uncondltlonal probablllty of using a

herd rule, so

P(Pa(8),1) = 8p(p,(8),1). (23)

Finally, we introduce another parameter ¢ to augment the initial

probability of trembles (i.e. v = 0). With zero weight on any evidence, the

resulting choice probabilities are uniformly random: p°.

Given 6 probébility of a herd rule and ¢ probability of a tremble,

the
probability of an evidence—based'rule is 1-6-¢; hence, the initial
unconditional.probability distribution over evidence-based rules is
©(v,8,1) = (1-6-¢) p(v,6,1) . (28

Then the initial unconditional log-propensity for rule p (whether an evidence-

based rule, herd rule, or tremble) is

w(p,1) = Inl[a(p,1)] . (25)

With the initial log-propensities so specified, the dynamic eq(l7) fully

determines w(p,t) for all t > 1.

5.5 Transferrence.

involves a variety of games. For instance, Suppose an experiment consists of



one run with one game for T periods,

game for T periods.

WP THL) = (1-7)w(p,1) + TW(p,T*) , (26)

where T#* indicates the update after period T of the first un, and 7 is the

transference barameter, If 5 - 0, there ig no transferance, SO0 period T+1 hasg

the same initial logjpropensity as period 1; and if T =1

transfereﬂce, so the first period of the second run has the log

5.6. The Likelihood Function.

The theoretical model involves 10 bParameters: ¢ = (8, e, El, ;2, ;3,

g, o, Bos By, T). The quadruple of Parametersg (;1, Eé, ;3, 9) represents

the mean of the participant’s initia] Probability digtrj i

evidence-based rules and ¢ is the standard deviation of that pProbability

are the learning barameters of €q(18); and 7 ig the

transference barameter in eq(26) for the initial bPropensity of the sdbsequent

funs. This revised model has one additional bParameter over the model of Stghl

(2000b) : namely ¢, 19
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Let sh = (ghl, ,sP2T) € A?T denote the choices of participant h for an

experiment consisting of two runs of T periods each with action set A, and let
n! denote the number of participants who choose action j in perlod t.

The rule propensities and law of motion yield population choice

probabilities:

PSXE) = [ B,(0%m)0(p,t|€)dp . (27)
Then the log of the joint probability of the data conditional.onef is
LL(¢) = z Zj n} log[ps¥é)] . (28)

To perform the integration required by eq(27), we impose a finite grid on

the (v,ﬁ)?space [see Appendix B for details].

5.7 Maximum Likelihood Estimates

The log-likelihood function, eq(28), for the entire pooled data set wag

maximized with respect to the parameter values. Compared to the 9-parameter

model of Stahl (2000b) for this exact same data set,zo'the revised model

increases the LL by 17.31. We would like to know whether this improvement is

due to the extra parameter or the different specification of herd behav10r

To address this questlon we restricted the tremble parameter (¢) to be 0 and

Te- estlmated the model. The restricted LL value decreased by 9.05, Thus, we

can decomposs the 17:31 improvement into a 9.05 improvement due to the

addition of the ¢ Parameter, and the remaining 8.26 improvement due to the

different specification of herd behavior 21

The parameter estimates for the revised model are displayed in Table V.
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Note that the estimates of three parameters fall on the boundary of the

bParameter space: vy = 0, Bo =1, and 7 = 1.22 ye interpret this finding as

indicatin that a model with just 7 "interior" arameters can fit the data asg
g J P

well as the full 10 Parameter model.

6. Performance and Testing of Rule Learning

model. First, by restricting the learning Parameter B, = 0, ye eliminate rule

learning completely, leaving the "Diverse Worldly LBRIAE" model. Second, by

further Yestricting the variance- arameter o2 = 0,23 we eliminate diversity in
g p y

the population,‘leaving the "Worldly LBRIAE" model. Third, by further

eliminating all evidence except level-1 evidence (;é = Eg = 0), we obtain

the original LBRIAE model. The corresponding in

also tested.

6.1 Diverse Worldly LBRIAE

The maximum LI value with By restricted to decreases from -4720.09 to
-4730.79. Twice this difference (21.40) ig asymptotically distri
sQuare,with one degree of freedom and hag a p-value of 3.7x1078, Thus, we can

strongly reject no rule learning.

6.2 Worldly LBRIAE

The maximum 1ikelihood estimates with A1 and ¢ restricted to 0 are

displayed in Table V. The 1L value decreases to -4756 .04, Compared to the
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Diverse Worldly LBRIAE model, twice the difference (50.50) is asymptotically

distributed chi-square with one degree of freedom and has a p-value of

1.2x107*2.  Thus, we can strongly reject homogeneity of the population.

Compared to the revised Rule Learning model, twice the difference (71.90) is

distributed chi-square with 2 degrees of freedom and has a p-value of

2.4x10716

6.3 LBRIAE

The maximum likelihood estimates with f,, ¢, and v, and v, restricted to

0 are displayed in Table V. The LL value decreases to -4772.52. Compared to

the Worldly LBRIAE model, twice the difference (32.96) is asymptotically
distributed chi-square with one degree of freedom and has a p-value of

9.4x107%. Thus, we can strongly reject the unsophisticated LBRIAE model in

favor of more sophisticated learnlng that takes account of level-2 evidence.

The other compound hypotheses tests are rejected also at extremely

1" lowﬂ
confidence levels.
6.4 Rule Learning without Diversity
To evaluate the relative contribution of Rule Learning (B;) versus

diversity (o), we also considered the alternative Rule Learning model with o

restricted to 0. This version of Rule Learning contains just three rules:

trembling (p®), herd (q*(6)), and a single evidence-based (or SW95 "worldly")

rule with fixed weights (v, V,, Vs, 0). Since this model does not

require integration over the rule space as in eq(26), it is'computationally

much simpler than the full Rule Learning model and the Diverse Worldly LBRIAE

model. The maximized LL value of Rule Learning without diversity is -4739.34,

a decrease of 19.25. Twice this difference is distributed chi-square with one
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degree of freedom (6 = 0) and has a P-value of 5x10-10, Thus, we strongly

reject this restriction.

leaving seven interior

barameters. The further restriction of By = 0 results in the Worldly LBRIAE

model, and a further decrease of 16.70 in the maximized LI, value, which with

two degrees of freedom (B, and B1) has a P-value of 6x1078, Thus, we strongly

reject this restriction, 1In other words, adding rule learning without

learning without diversity, and (ii) a increase of 19.56 due to diversity

(with rule 1earning). The alternative Path yielded a decomposition into (iii)

a increase of 25.25 due to diversity without rule learning, and (iv) a

increase of 10.70 due to rule learning (with diversityy, Either way, both

features adqg significantly to the Worldly LRRIAR model,

6.6 What Rules are Learned

The grid for (vq, Y2, V3 and ) used to Perform the integration required
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by eq(27) consists of 175 points, which is constructed from 5 values for 4 and

35 values for vy, vy, V3); see Appendix B for details. 1In addition, there

are 5 points corresponding to the herd rules for the five ¢ values. We also

add one point corresponding to the mean (7, f). With only 181 discrete

rules24 at which the ¢ distribution is evaluated, it is feasible to examine

all these values and assess which rules are "important" in the sense of
® P

being a significant part of the initial distribution and/or later

distributions. By this criteria, of the 35 values for vy, vy, v3), at most

five of them are important, and all of the herd rules and the mean point w,

8) are important.

The initial distribution, e(v,0;1), is depicted in Figure 1. The

probability, ev,0;1), is given along the vertical axis. The values of (vyq,

Yy, V3) are given along the horizontal axis, and the values for § are given

along the "Theta" axis. "QOther" denotes the aggregate of o(v,0;1) over the

150 rules comprised by the 30" "unimportant™® values of vy, v,, Vi) times the

five 6 values. The rule depicted second from the left with (v,, Vo, V3) =

(0.80, 0.07, 0) is the rule corresponding to. the mean (v, 8); it is shown

with all probability mass in the cell corresponding to § = 0.25 (since that

value is closest to 7 = 0.35). The herd rules are at the far right side of

the graph. The cell in the near right corner combines the tremble rule and

the herd rule with 4 = 1 (since they are observationally equivalent), Clearly

the tremble and herd rules are the dominant rules in the initial period

’

followed by the level-1 rules (the left side of the graph). The Other group

has a total probability of only 2.9%. Only one rule that gives weight to Nash

evidence was found to be important (0.81, o, 0.27); it is displayed just to

the left of the Other'category and has a total probability mass of 3.4%.

Using graphs like Figure 1, we examined how @(v,4;¢t) changes over time for



each experimental session.

similar over sessions, Figure 2 displays the total change in ¢ from the

initial period to the final (30th) period, averaged over the four sessions

with 5x5 games. The analogous figure for the sessions with 3x3 games ié

virtually the same. From Figure 2, we see that (i) trembles and herd behavior

decline substantially over time (—l6.1%), (ii1) the level-1 rules and the rules

that combine level-1 and level-2 evidence

(+13.92),

(iii) the Other rules are roughly unchanged over time (+0.8%), and

the one "initially important” rule that gives weight to Nash evidence (0.81,

0, 0.27) increases by only (+1.4%) .

Thus,

Herd behavior,

however, does survive (37.2%) because as a trend emerges (in particular, if

play converges to a Nash equilibrium),

7. Conclusions.
xonclusions

The literature on learning does not adequately deaiﬁ/with how one might

choose among the rapidly growing number of models, Part of the reason for

this lack of model comparison is the lack of agreed

comparison. There are many imperfect yardsticks (e.g. likelihood, mean

Squared error, T-period-ahead forecasts, etc., each in-sample and out-of-

sample), and it ig temptihg to use the yardstick that favors one’s own model.

We consider g rich variety of action~reinforcement learning models, and

numerous yardsticks for comparison, After putting the models on equal
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footings, such as deriving population versions of the models where necessary,

and allowing for mutations and trembles, the winner of the "horse race" among

the seven reinforcement models considered is the four-parameter LBRIAE model

(logit best-reply with inertia and adaptive expectations), and this winner

dramatically outperforms the mindless AR] model, the mental repllcator model,

and the Erev-Roth models. Second place in the horse race goes to the logit EWA

model without experlence weighting.

Further, we formulate a population Rule Learning model that nests the
-LBRIAE»model, thereby enabling standard hypothesis testing. We. strongly reject
the three implied restrictions. We reject the hypothesis that a best-reply
dynamic using only level-1 evidence (LBRIAE) is as good as a best- reply dynamlc

using level-2 evidence as well (the Worldly LBRIAE). We reject the hypothesis

that the population is homogeneous in favor of a heterogeneous model (the

Diverse Worldly LBRIAE) that admits a distribution over the evidence weights.,

Finally, we reject that this distribution is constant over time in favor the

Rule Learning model in which the distribution changes according to the Law of

Effect. These findings are reinforced by alternative performance measures.

The measure of the log-likelihood functions for all periods except the first

period demonstrates that the improvement in log-likelihood is not just a

first- perlod phenomena. While the root-mean-square-error measures are not

substantially different, they are consistent with the other measures,

Finally, the dominance of Rule Learning in-sample is replicated for out-of-

sample forecasting.
These findings do not mean that the LBRIAE model and Rule Learnlng will

outperform all the alternatives for & specific game and data set, nor for

individual data. Rather, if you want a model (and a single set of estimated

Parameters) that predicts population frequencies well across a variety of
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ENDNOTES

lFor example, Selten (1990, 1991),‘Kandori, et al (1993), Crawford (1994) , van

Huyck, et aJ (1994) ,

2For example, Mookherjee and Sopher (1994, 1997), Friedman, er al (1995), Roth

and Erev (1995), Anderson, et aJ (1997), Camerer and Ho (1997, 1999), Cheung

and Friedman (1997, 1998), Fudenberg and Levine (1997, Rapoport, et a1

(1997), Erev and Roth (1998), and Feltovich (2000)

3For example, Stahl (1996, 1999, 2000a-b)} and Barron and Erev (2000) .

eplicator dynamics in a variety of games and

under a variety of information conditions, Mookherjee and Sopher (1997)

formulate a generalized quantal Tesponse lea
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equilibrium. Barron and Erev (2000) investigate reinforcement dynamics

applied to three rules: loss avoidance, fictitious play,'and best-reply to

last observation. Feltovich (2000) focuses on asymmetric- information games

and several simple learning models.

SWhile the ex post likelihood of the data is always higher given individual

parameter estimates, since there is no way to identify individual parameters

ex ante, the appropriate cémparison is between the likelihood for a population

model and the likelihood for a model in which the population is simulated by

random draws with replacement from an urn filled with the ex post individual

barameter estimates. Based on this comparison, there is no advantage to the

latter individual-parameter urn model.

6Recently, Camerer, Ho and Chong (2000) have proposed an extension of the EWA

model that includes a sophisticated player and the possibility of

transferance.

7

€.g. Mookerjhee and Sopher, 1994; Van Huyck, Battalio and Rankin (199?); Erev

and Rappoport, 1998; Costa-Gomes, Broseta and Crawford, 1998; Barron and Erev,

2000; and Camerer, Ho and Chong, 2000.

8Note that p(t) remains to the right of the payoff matrix U, in eq(3), since

it is the payoff against the actual frequency of play in the population that

matters.

e investigated power-form specifications, but have consistently found the

logit form to fit better [as do Camerer and Ho]. Also, an inconvenience of the
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power form is boundary requirement that w;(t) 2 0 for all t.

10y implicitly take the initial conditions, w(l), to be the same for all

three models. However, this could be problematic if the range of I'() is not

the full domain for w(l), since eq(6a) requires that w(l) = F(E[p(l)]O]).

lthis is the extended model alluded to in section VI of Erev and Roth (1998).

127he Erev-Roth (1998) 3-parameter model is nested within these 6 parameter

models with b” = b" = 0 and p, = Py = nﬁ:ﬂi%k}/a. These restrictions are

strongly rejected on our data with p-values of 10-14 or less.

13The péwer form was found to perform worse, consistent with Camerer and Ho'

own findings.

14Obviously one could consider alternative specifications of noisy best-

reply functions such as the probit form; however, there is a limit to the

amount of data mining we will engage in.

1510 extend to asymmetric n-player games, we would use an n-population model

with separate ARl processes for each population. The own-population AR1

process would represent "following one’s herd", while the other AR1 processes

would describe beliefs about the other players (populations).

léThere is‘very little other suitable data available. Cheung and Friedman

(1997) ran.éxperiments using mean-matching and population feedback, but this

treatment occured in a sequence of different information treatments that would
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confound our analysis. Van Huyck, Battalio and Beil (1991) provide feedback

of a summary statistic for the population but not the whole distribution.
Nagel (1995) made public an anonymous list of all choices, but the action set
was infinite [see Stahl (1996} for a similar analysis of that data.] There
is, of course, a wealth of data using pairwise-matching; however, at the very
least we would expect a slower rate of learning in such environments, which

would necessitate separate parameter estimation from the mean-matching data.

We leave that task for future research.

17ye also computed the Mean Absolute Deviation, 3 [pj(t) - @j(t)[, but we do

not report this here because it does not add anything to the model comparisons

over the RMSE.

18For the full six-parameter EWA, we found vy and N, to be insignificantly

different from zero, ' which motivated our consideration of the restricted model

without experience weighting.
19erd behavior still entails one parameter (now & instead of ;0).

20The code for the latter model can be downloaded from

www.eco.utexras.edu/faculty/Stahl/experimental /Rule_learning.

21Tn the old specification, herd evidence was defined as In[q®(8)], then
weighted by a free paramefer vy and combined with other evidence as in eq(19).
Thus, pure herd behavior yielded probabilistic choice functions: p;(vg,0) =
qg(e)fﬂ/[zk qf(6)"°), which distort the q®(f) probabilitieé in a non-linear

way, as opposed to the linear nature of the partial adjustment model. In
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retrospect, the stylistic benefit of expressing all behavioral rules in the

form of evidence-based rules is outweighed by the loss in goodness-of-fit.

22This is also true of the original model (Stahl, 2000b).

2314 the 1imit, as o0 =+ 0, the initial probability distribution over evidence-

based fules; ¢(v,0,1), converges to a degenerate distribution with all

probability mass on the rule characterized by the mean (v,9). Thus{.instead

of using eq(2la) with ¢ = 0, we instead estimate the limit model with a single

evidence-based rule (;,?), a single herd rule ph(?), and a tremble rule.

24Decreasing the number of divisions per dimension of the grid definitely

worsens the fit of the model, while doubling the number of divisions (which

entails 415 points) makes a negligible improvement. Therefore, the 181 point

grid is quite adequate.

25This admittedly ad hoc value came about by considering the case of J=5, and an

upper bound on r corresponding to 0.9999 of the interval [1/7,1]. Since the

results are robust to this number and to J, this value become "grandfathered”

in our code.



Table I.

Model

Logit Mental Replicator
AR1
Erev-Roth
uniform prior:
insuff. reason:
LBRI

Logit EWA

LBRIAE

— Egs

4

11 -

11,12

np

1
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Base Models on GX4 & GX6 Data

LL LL(-1) RMSE
-5460.50 -4985.22 .160
-5080.96 -4566.79 .124
-4935.20 -4421.02 .110
-4867.77 -4424 .57 101
-4927.92  -4489.15 .098
-4822.30 -4398.97 .091
-4803.45 -4371.71 .088

(optional)
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Table II. Best Versions - GX4 & GX6 Data

Model " Deviations mp
ARL trembles® 2
Logit Mental Replicator both 3
Erev-Roth

uniform prior: mutations 7

insuff. reason: mutations 7

LBRI trembles™® 3
Logit EWA :

trembles™ 6

w/o EW: . trembles®™ 4

LBRIAE. trembles® 4

*These models implicitly contain a form
"both" = mutations and trembles

LL LL(-1) RMSE
-5069.72  -4555.54 1923
-4992.73  -4563.06  .118
-4916.93  -4402.76  .107
-4828.06  -4405.53 094
-4805.13  -4369.35 088
-4783.64  -4353.29 089
-4784.07  -4353.28 089
-4772.52  -4338.17  .086

of mutations,
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Table III. Sum of Best Version Forecasts of Sessions

Model : LL LL(-1) RMSE
ARLl -5094. 54 -4580.11 .125
Logit Mental Replicatoxr -5024.31 -4594.62 .120
Erev-Roth
uniform prior: -4967.04  -4449 .86 L1111
insuff. reason: -4868 .41 -4447 .80 .099
 LBRI -4834.45  -4397.58  .091
Logit EWA

-4808.68 -4375.82 .091

w/o EW: -4803.73 -4372.83 .091

LBRIAE -4794.42 -4359 .11 .088
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Table IV. Parameter Estimates and Standard Errors for Best Versions
Logit Logit EWA Erev-Roth
Parm AR1 Repl LBRT LBRIAE _w/o EW Uniform Insuf. R
9 L4020 .6757 .2507 .3269 L3701 .3835
(.0418) (.0139) (.0281) (.0417) (.0520) (.0396)
B .0868 .3650 .3955 L0975
(.0036) {.0222) (.0391) (.0047)
€ .0365 1182 0764  .0530 .0684
(.0221) (.0106) (.0047) (.0093) (.0128)
n .8091 .7513
(.1052) (.0633)
6 .6154 .6053
(.0102) (.0202)
o .6659 "
(.0280)
S .1696 .2325
(.0918) (.1004)
3 .0966 .1006
(.0113) (.0107)
Po»P1 .7392 1.049
(.0313) (.0373)
b~ .9998 1.000
(.0261) (.0375)
bt .0100 2.3E-8
(.0105)

(4.5E-6)
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Maximum Likelihood Parameter Estimates for Revised

Populations Rule Learning and Nested Hypotheses

: Revised Pop Diverse Rule Lrn Worldly
Parameter Rule Learning Worldly IBRIAE w/o Div. LBRIAE LBRIAE
F) 0.533 '0.516% 0.574 0.532% 0.573%
(0.030) (0.030) (0.041) (0.019) (0.019)
€ 0.090 0.033 0.118 0.059 0.053
(0.023) (0.010) (0.030) (0.009) (0.009)
vy 0.797 0.968 0.375 0.358 0.395
(0.204) (0.124) (0.027) (0.030) (0.039)
v, 0.070 0.092 0.027 0.022
(0.020) (0.016) (0.003) (0.003)
vy 0.000 0.000 0.000 0.000
(3x1079) (4x1077) (1x1078) (1x10712)
7 0.353 0.359 0.127 0.184 0.251
(0.027) (0.027) (0.019) (0.020) (0.028)
o 0.767 0.757
(0.089) (0.079)
Bo 1.000 0.974
(0.019) (0.016)
B, 0.008 0.011
(0.0014) (0.0025)
T 1.000 1.000
(0.008) (2x1075)
LL -4720.09 -4730.79 -4739.34 -4756 .04 -4772.52
No. of
interior 7 6 7 5 4
parmeters

*We report here the combined estimate of 6(1l-¢).
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Table VI. 1In-Sample Performance Measures for Rule Learning

Model L LL(-1) RMSE
LBRIAE *-4772.52 -4338.17 - 0.086
Worldly LBRIAE -4756.04 -4329.20 0.083
Rule Lrn w/o Diversity -4739.34 -4308.68 0.081
Diverse Worldly LBRIAE . -4730.79 -4305.20 0.080
Pop Rule Learning .44720.09 -4292 .34 0.079

Table VII. oOut-of-Sample Performance Measures for Rule Learning

Model 1L LL(-1) RMSE
LBRIAE - - 479442 -4359.11 0.088
Worldly LBRIAE -4793.51 -4368.02 0.087
Rule Lrn w/o Diversity -4769.55 -4337.63 0.085
Diverse Worldly LBRIARE -4760.96 -4335 .62 0.083

Pop Rule Learning -4754.17 -4325.98 0.083
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APPENDIX

Payoff Matrices

A
Run 1

68 | 10 | 76 | 33 | 75
73 1 4 | 59 0 8
3 1 92 | 16 | 15 | 99
86 | 54 | 25 | 41 6
72 1 98 1 92 | 8 | 52
2 | 31 0 | 99 6
6 1 10 | 97 | 40 | 24
98 | 96 | 38 | 48 | 19
42 1 40 | 80 | 51 | 48
97 | 46 5 | 68 | 49
22 1. 79 1 35 | 56 | 75
22 1 38 | 78 1 55 | 99
27 | 58 1 | 11 0
70 1 1134 | 59 | 37
56 | 84 | 60 | 23 2
19 | 43 | 96 | 85 | 85
28 | 62 | 88 | 74 | 24
67 | 21 | 38 | 48 | 38
40 | 58 0 | .15 92
16 | 15 | 86 1 99 [ 79

20| 0| 60

0 60 [ 0]

10 | 25 | 25

80 | 60 | 50

60 | 70| 90

0 0 _|100

50 0 0

70 | 35 | 35

0 | 25 | 55

50 1 60 | 30

30170 | 20

70 | 25 | 35

Run 2
19 | 43 | 96 | 85 | 85
28 | 62 | 88 | 74 | 24
67 | 21 | 38 | 48 | 38
40 | 58 | 0 | 15 | 92
16 | 15 | 86 | 99 | 79
22 | 79 | 35 | 56 | 75
22 [ 38 | 78 | 55 | 99
27 158 | 11111 o0
70 |1 | 34 | 59 | 37
56 | 84 | 60 | 23 | 2
2 | 31 0199 ] &6
6 | 10 | 97 | 40 | 24
98 | 96 | 38 | 48 | 19
42 | 40 | 80 | 51 | 48
97 | 46 | 5 | 68 | 49
68 | 10 | 76 | 33 | 75
731 4 1591 o 8
3 1 92 | 16 | 15 | 99
86 | 54 | 25 | 41 6
70 | 98 | 92 | 8 | 52
30 | 50 1100
40 | 45 | 10
35 | 60 |0
30 1100 | 22
35 | 0 | 45
51 | 50 | 20
70 | 60| 90
60 | 80 | 50
40 | 20 [100
68 | 4 | 49
86 | 41 | &
72 | 25 | 39
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APPENDIX B. Computational Methods and Issues.

To perform the integration required by eq(l5), we impose a finite grid on

the (v,6)-space. To ensure that the results are robust to the specification

of the grid, we experimented with a variety of finite grids. We have settled

on a computationally efficient grid consisting of 5x35 = 175 points generated

as follows. First, for §, we specify 5 uniformly spaced points: {0, 0.25,

0.5, 0.75, 1.0).

. The v-subspace is represented by 35 points. To describe these 35 points,

first recall eq(20) which defines the probabilistic choice function for each

rule, and consider a rule with one and only one v, > 0. 1In games with binary

lottery payoffs (0 to 100%), how responsive is the choice behavior of such a

rule to, say, a 10 percentage point difference in payoff? In other words,

suppose the evidence for one action, say j, is 10 points higher than any other

action. How much more likely is action j to be chosen? Using eq(20), the

probability of choosing action j out of J actions would be

T = exp(l0vy)/[J-1+exp(10p,)]. ' (B1)

Clearly, for large (small) values of Vi, this probability r is close to 1

(1/3), and is a non-linear function of v,. TFor the man symmetric normal form
k Yy Sy

games we have used, payoff differences of 10% are typical. A smaller

difference, say 5%, is on the margin of what we generally consider

statistically significant, while a larger difference, say 20%, seems too crude

relative to human discriminating abilities. Thus, a 10 percentage point

payoff difference is a reasonable standard by whiéh to assess the behavioral
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impact of the v, weights.

We would like the range of v, weights in our grid to span fairly the range

of choice behaviors. In other words, we would like our grid points to

correspond to equally spaced behaviors (probabilities). Solving eq(Bl) for v,

in terms-of r gives v, equal to

0.1 In{(J-Dr/(1-r)] = £(x,J) . (B2)

For any probability r € [1/J,1), £(r,J) gives the magnitude of the v, weight

such that an action with a 10 point payoff advantage would have a choice

probability of r. We note, however, that £(1,J) = «, and from eq(Bl), we can

see that the choice probability an action that has a 10 point higher payoff
than any other action will be quite close to one for all values of v > 1.

Thus, bounding the v, weights from above by 1 would not induce any significant

loss in the behavior that could be represented. We chose v = 0.1 1n(49996)

= 1.082, as our upper bound.26 This corresponds to a choice probability of
49996/ (49995+3), which when J=5 is 0.99992, and is clearly quite insensitive
to J for all practical values of J that would be used in experimental games.

Now, take four equally spaced points from [1/J,(J-1)/J]: r, ( [1 + 0.25h(J-

1)1/J, for h = 0,...,3, This partition yields 5 wvalues for (k: {£(r,,J), for

h=0,...,3), plus V. While these values are unevenly spaced in v-space,

they induce evenly spaced behaviors (probabilistic choices) for the reference

10 point payoff difference.

1This admittedly ad hoc value came about by considering the case of J=5, and an
upper bound on r corresponding to 0.9999 of the interval [1/J,1]. Since the

results are robust to this number and to J, this value become "grandfathered"
in our code.
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Next we require that the sum of the weights over the three dimensions of

v-space, vy not exceed V. This restriction effectively creates competition

amoung the 3 kinds of evidence (level-1, level-2 and Nash): when some Vi

is increased, the weight on some other kind of evidence has to be decreased.
Without this competition, the MLE procedure will produce the following

spurious results. Suppose that after 7 or 8 periods, choice behavior has

converged ‘to the extend that the level-1 and level-2 rules put high

probability on the best-response. The MLE procedure is likely to drive both

vy and v, as high as possibie,icreating only a slight increase in the log-

likelihood value but obscuring the relative importance of level-1 and level-2

evidence. Our restriction forces the MLE to assess the relative importance of

each kind of evidence. To explore the effect of this restriction, we

experimented with a variety of values for the upper bound (some higher and

some lower than v). Typically, an increase in the upper bound will increase

the likelihood function only slightly, and have no significant effect on the
parameter estimates (other than better identifying the relative v welghts) .

Thus, the results are robust to the specification of the upper bound.

Given this restriction on the sum of the weights, it is natural to specify

the other points of the grid so the sum of the weights equals a value in

{£f(r,,J) , h = 0,...,3). To do this, define the 35 point “triangular"-grid:

T = {(,...,1;) € (0,1,2,3,4)® | isum 2 i < 4.

Then for any i € T, define the'weight for dimension k as v (i) = £0CS eums

J) (ix/

isum). The "distance", » used in eq(9a and 10a) is the Euclidean distance

in this index grid.

The entire grid is then the Cartesian product of the 5 f points and these
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35 v points. In addition to this fixed grid of 175 points, we add the mean

(v,8) as a variable grid point, making a total of 176 points in all.

To find a € vector that maximizes LL({), eq(28), we use a simulated

annealing algorithm [Goffe (1994)] for high (but declining) temperatures, and

then feed the result into the Nelder and Mead (1965) algorithm. We find the

simulated annealing algorithm to be effective in exploring the parameter

space, but very slow to converge once it settled in on a local maximum, while

the latter algorithm converges much faster locally.
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APPENDIX D. Empirical Frequencies of Data

e

Figures 4a-h for the "GX4" data set are already published in Stahl
(2000b) .
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APPENDIX €. Empirical Frequencies of Data

Figures 4a-h for the "GX4" data set are already published in Stahl

(2000&) .
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