
Ž .Games and Economic Behavior 32, 105]138 2000
doi:10.1006rgame.1999.0754, available online at http:rrwww.idealibrary.com on

Rule Learning in Symmetric Normal-Form Games:
Theory and Evidence1

Dale O. Stahl

Malcolm Forsman Centennial Professor, Department of Economics, Unï ersity of Texas,
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An experiment, consisting of two 15-period runs with 5 = 5 games, was designed
w Ž .xto test Stahl’s International Journal of Game Theory 28, 111]130 1999 model of

boundedly rational behavioral rules and rule learning for symmetric normal-form
games with unique symmetric Nash equilibria. A player begins with initial propen-
sities on a class of evidence-based behavioral rules and, given experience over time,
adjusts her propensities in proportion to the past performance of the rules. The
experimental data provide significant support for rule learning and heterogeneity
characterized by three modes. We also strongly reject ‘‘Nash learning’’ and
‘‘Cournot dynamics’’ in favor of rule learning. Journal of Economic Literature
Classification Numbers: C72, C90, C51, C52. Q 2000 Academic Press
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1. INTRODUCTION

Current research in game theory addresses the question of how players
learn to play. At one end of the spectrum, we have the super-rational

Ž . Ž .theories of Jordan 1991 and Kalai and Lehrer 1993 , and at the other
extreme, we have reinforcement learning models of Mookherjee and

Ž . Ž . Ž .Sopher 1994, 1997 , Roth and Erev 1995 , and Erev and Roth 1998 , in
which players have only minimal intellect. The objectives of these inquiries

Ž .are mixed, and include i a foundation for an improved equilibrium
Ž . Žtheory, and ii a realistic description of human behavior especially in

.experimental games whether or not that behavior is consistent with Nash
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omissions are the sole responsibility of the author.
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equilibria. While the super-rational theories require unrealistically strong
assumptions, the naive reinforcement models suffer from the opposite sin
of assuming players are too limited in their reasoning powers.

The middle ground, in which players potentially have access to decision-
making rules of varying sophistication and can learn which rules are
appropriate in given situations, is probably much closer to the truth and,
hence, would provide a far better descriptive and predictive model of
human strategic behavior. If all that humans could learn about a game was
which action to choose eventually, then nothing would be learned that
could be reliably transferred to a different game. There is a clear advan-
tage for humans to learn general rules which could be applied across a
variety of games. The highest payoffs will go to those who choose actions
that are optional with respect to the true probability distribution of play in
the population for the next encounter, which entails being one step ahead
of everyone else and, hence, requires flexibility in forecastingrdecision
rules. As teachers of economics and game theory, perhaps our greatest
contribution is to introduce students to new ways to analyze problems and

Ž .make decisions such as Bayes rule . For our theories to continue to
exclude such learning would be shortsighted.

ŽSome steps in this direction have already been taken Camerer and Ho,
1997, 1999; Cooper and Feltovich, 1996; Erev and Roth, 1998; Rapaport et

.al., 1997; Sonsino et al., 1998 . The purpose of this paper is to take another
step towards articulating and empirically testing such middle-ground theo-
ries.

Ž .Stahl 1999 put forth a theory of boundedly rational behavior character-
ized by ‘‘behavioral rules’’ and a theory of rule learning based on the
performance of these rules. The general model is illustrated in Fig. 1. A

Žbeha¨ioral rule is a function that maps from the available information the
.game and any history of play to the set of probability distributions on the

Ž .actions available in the game. We also define a probability distribution w
Ž .over the space of behavioral rules. A random draw from w selects a rule,

Ž .which given the available information generates a probability distribution
on the actions. A second random draw from this latter distribution consti-

FIG. 1. Rule learning scheme.
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tutes the chosen action. That action in combination with the choices of
others in the population of players produces a payoff. In addition to
knowledge of her payoff, the player receives information about the recent
choices of the other players such as the recent empirical frequency of
choices. This information is used to evaluate the performance of the
behavioral rules. For example, the player could deduce the expected utility
payoff of each rule against the recent past. Following the process of

Ž .evaluating the rules, the probabilities w to use the rules are updated. It is
assumed that probabilities increase for rules that would have yielded
higher payoffs in the recent past, and vice versa. This is the ‘‘Law of

Ž .Effect’’ in psychology Thorndike, 1898 , and is also the logic behind
Ž .evolutionary dynamics Hofbauer and Sigmund, 1988 .

Ž .For example, consider a simple space consisting of two rules: 1 ‘‘follow-
ing the herd,’’ in which the current choice probabilities match the recent

Ž .frequency distribution of choices, and 2 ‘‘Cournot best response’’ to the
recent past. Let w denote the probability of using the herd rule, so0
1 y w is the probability of using the Cournot rule. A random draw picks0
one of the two rules}suppose the Cournot rule}which is then used to
choose an action, which yields a payoff. Now suppose the player observes
the population distribution of choices before having to make her next
choice. The player can evaluate the hypothetical payoff she could have
received had she used the other rule. If the following-the-herd rule would
have yielded a greater payoff, then probability w increases, and vice versa.0
In the next period, a rule is selected according to the updated probabili-
ties.

The first step in operationalizing this conceptual framework is to repre-
sent the huge space of potential behavioral rules. Our approach is to posit
a small set of archetypal rules and a way of combining these rules to span
a large space of plausible and empirically relevant rules. Since initial
behavior is crucial to dynamic prediction, we need behavioral rules that
are accurate for the initial period as well as later periods. Therefore, we
build on the empirically successful level-n theory of bounded rationality

Ž . wfor one-shot games developed by Stahl and Wilson 1994, 1995 hence-
xforth SW . To extend this theory to multiple-period settings, we define

history-dependent versions of the level-n rules. For example, the SW
level-1 rule yields a noisy best response to the uniform distribution, and its
multiperiod extension yields a noisy best response to the recent empirical
frequency of play. One interpretation of this rule is that the expected
utility of an action against the recent past is a kind of ‘‘evidence’’ for that
action, with the player tending to choose the action with the most net
favorable evidence. This interpretation suggests a large family of ‘‘evi-
dence-based rules’’ which we develop in Section 2c. Evidence-based rules
are generalizations of level-n rules that also admit Nash behavior, modified



DALE O. STAHL108

versions of fictitious play and adaptive expectations, and mixtures of those
rules. While not exhaustive, this family of rules is nonetheless very rich.
Moreover, the interpretation of these rules as the result of ‘‘weighing the
evidence’’ permits a natural interpretation of the learning dynamics as
adjusting the weights on the evidence.

ŽThere are two kinds of learning present in the general model recall Fig.
.1 . First, the players can learn in the sense of acquiring relevant data but

sticking to the same behavioral rule. For instance, the two rules in the
Žabove example learn via data acquisition the population distribution of

.choices . As another example, in a game against nature, Bayesian updating
can be viewed as a fixed behavioral rule that learns via acquiring new data.
We refer to this first sense of learning as ‘‘data learning.’’ Second, the
players can learn by assessing the relative performance of the behavioral
rules and switching to better performing rules. We refer to this second
sense of learning as ‘‘rule learning.’’

Ž .In Stahl 1996 , a simplified version of this model was confronted with
Ž .experimental ‘‘guessing game’’ data gathered by Nagel 1995 , and the

results were very encouraging. As an initial empirical test of the theory
Ž .extended to normal-form games, Stahl 1999 used data gathered in an

experiment that was primarily designed to test the robustness of the SW
results, but since the experiment lasted two periods, the data could
potentially provide evidence for learning. While two periods provide barely
enough opportunity for learning by participants, the statistical test rejected
the hypothesis of no rule learning. On the other hand, the no-rule-learning
hypothesis could not be rejected for the majority of participants. This less
than stellar individual learning result may reflect the difficulty of measur-
ing learning over just two periods, rather than a falsification of the model.
Clearly, more periods of data are needed for more conclusive testing of
this model versus alternative models, which motivates the current experi-
ment and paper.

Ž .In this paper, we make a small change in the Stahl 1999 specification
Ž .of the evidence-based rules Section 2b which improves the fit, and then

we estimate the parametric learning model for each participant of the
experiment. While such a model with so many parameters has little

Ž .practical value, it is quite useful for i addressing the general questions of
learning unhampered by the false assumption of homogeneous partici-

Ž .pants, and ii characterizing the heterogeneity in the population. From
our experimental data, we find that the hypothesis of no rule learning can
be rejected in the aggregate and for a majority of the participants. We also
find that there are three primary modes in the population distribution of
parameters.

The paper is organized as follows. Section 2 presents the theory of rule
learning and evidence-based boundedly rational rules. Section 3 presents



RULE LEARNING 109

the experimental design and data. Section 4 presents the test results, and
Section 5 summarizes and discusses the findings.

2. THEORY

We begin with a description of the game environment, then present the
general theory of rule learning, and finally present the specific family of
evidence-based rules and some operational specifications.

a. The Game En¨ironment

Ž .Consider a finite, symmetric, two-player game G ' N, A, U in normal
� 4 � 4form, where N ' 1, 2 is the set of players, A ' 1, . . . , J is the set of

actions available to each player, and U is the J = J matrix of expected
utility payoffs for the row player, and U9, the transpose of U, is the payoff
matrix for the column player. For notational convenience, let p0 '
Ž .1rJ, . . . , 1rJ 9 denote the uniform distribution over A.

We focus on single population settings in which each player observes the
frequency distribution of the past action choices of all the other players in
the population. In our opinion, this is a richer and more appropriate
setting to study learning than settings in which each player is randomly
matched with just one other player in each round and observes the choice
of only that other player after that round. The latter setting is an
exceedingly difficult setting in which to learn, because not only is the data
process nonstationary, but it is also a poor sample of the population
statistics until many periods of data are accumulated. Since the data
learning task is much harder, sophisticated behavioral rules might not do
better than simple rules until the players observe much more data, but

Ž .experiments with many periods say 100 or more invite boredom effects
and incentive problems. Further, in real-world learning, humans typically
have ongoing access to a wealth of information about how other humans
have behaved recently. While the pairwise random matching protocol is
well suited to test one-shot equilibrium theory, it is not ideal for investiga-
tions of rule learning.

The empirical frequency of the other players’ actions in period t will
always be denoted by pt, and this information is assumed to be available to
each player.2 The first period of play will be denoted by t s 1. It is also

t � 0 ty14convenient to define h ' p , . . . , p , which is the history of other

2 Ž . Ž .See Crawford 1994 and Cheung and Friedman 1997 on adaptive learning models for
such situations.
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players’ choices up to period t with the novelty that p0 is substituted for
the null history. Thus, the information available to a player at the begin-

t Ž t.ning of period t is V ' G, h .

b. The General Theory of Rule Learning
t Ž .A beha¨ioral rule is a mapping from information V to D A , the set of

probability measures on the actions A. For the purposes of presenting the
abstract model, let r g R denote a generic behavioral rule in a family of

Ž t.behavioral rules R; r V is the mixed strategy generated by rule r given
information V t.

The second element in the general theory is a probability measure over
Ž .the rules, w r, t , which gives the probability of using rule r in period t.

Given the family of behavioral rules R and probabilities w, the induced
probability distribution over actions for period t is the integral of the

Ž t. Ž .behavioral rules over the rule space: H r V dw r, t .R
It is convenient to specify the learning dynamics in terms of a state

variable that is unrestricted in sign and magnitude. To this end, we define
Ž .the state variable, w r, t , called the log-propensity for rule r in period t,

such that the probability of using rule r in period t is

w r , t ' exp w r , t r exp w x , t dx . 1Ž . Ž . Ž . Ž .Ž . Ž .H
The last element of the general theory is the equation of motion for the

log-propensities. The Law of Effect states that rules which perform well
are more likely to be used in the future. This law is captured by the
dynamic on log-propensities

w r , t q 1 s b w r , t q b g r , V tq1 , for t G 1, 2Ž . Ž . Ž .Ž .0 1

Ž .where g is the reinforcement function for rule r conditional on informa-
tq1 Ž 0 t. Ž tq1.tion V s G, p , . . . , p . It is natural to assume that g r, V is the

Ž tq1.expected utility that rule r would have generated in period t: g r, V
Ž t. ts r V Up . Then, for small b and large b , past probabilities would be0 1

quickly swamped by new performance evidence, whereas for large b and0
small b , past probabilities would be strengthened despite new evidence.31

The reader may be more familiar with a one-parameter dynamic model
Ž . Ž . Ž . Ž tq1.in which w r, t q 1 s b w r, t q 1 y b g r, V . While this one-0 0

parameter model has the desirable property of being asymptotically stable
for 0 - b - 1, it has the shortcoming that we have no reason to believe0

3Of course, ‘‘small’’ and ‘‘large’’ are relative terms that depend on the range of values
Ž . Ž . Ž . Ž .taken by w r, ? y w r9, ? and g r, ? y g r9, ? , which depend on the cardinal units used

to measure expected utility.
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Ž .that the scaling of expected utility implicit in g is the correct scaling. To
Ž .allow for this ignorance, the econometrician would multiply g by a

Ž . Ž .scalar a ) 0 and estimate a . In our notation, b s 1 y b a .1 0
Ž .Given the rule space R and initial log-propensities w ?, 1 , the law of

Ž .motion, Eq. 2 , completely determines the behavior of the system for all
Ž .t ) 1. The operational questions are 1 how to specify the rule space, and

Ž .2 how to specify the initial log-propensities.
Ž .An attractive feature of this general model Fig. 1 is that it encom-

passes a wide variety of learning theories. For instance, to obtain replicator
dynamics, we can simply let the rule space R be the set of J constant rules
that always choose one unique action in A for all information states.
Fictitious play and Cournot dynamics can be seen as very special cases in
which R is a singleton rule which selects a best response to a belief that is
a specific function of the history of play. Moreover, the general model can
include these constant rules, best-response rules, and other rules.

In the next subsection, we introduce the family of evidence-based rules.

c. The Family of E¨idence-Based Rules

We will first present the abstract concept of evidence-based rules, and
then present the specific family of such rules that will be used in this
paper.

An evidence-based behavioral rule arises from the notion that a player
considers ‘‘evidence’’ for and against the available actions and tends to
choose the action which has the most net favorable evidence given the
available information. Suppose we hypothesize a finite number of kinds of

� 4 � 4 Jevidence, indexed by k g 0, 1, . . . , K , and let y ' y , a J = 1k jk js1
vector of real numbers, represent the k th kind of evidence: y ) yjk j9k
means that the k th kind of evidence is more favorable for action j than
action j9. For example, the vector of expected utilities against the recent

ty1 � 4past, Up , could be a kind of evidence. Let Y ' y , . . . , y denote the0 k
Ž .J = K q 1 matrix of evidence. It is important to understand that the

evidence is based on the available information V t, so we should write
Ž t.Y V to be perfectly clear.
Below, we will specify four kinds of evidence, but for now imagine a

class of functions that operate on the available information V t and
produce a matrix of evidence. Further, suppose this class of functions is

Ž t .parameterized by u , and let Y V ; u denote the matrix of evidence given
V t and u .

How will a player weigh such evidence? Let n G 0 denote a scalark
weight associated with evidence y . We then define the weighted evidencek
vector

t ty V ; n , u ' Y V ; u n , 3Ž . Ž . Ž .
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tŽ . Ž .where n ' n , . . . , n 9. In other words, y V ; n , u is a J = 1 vector of0 K
net evidence values, and we should expect that the strategy with the largest
net evidence will be most likely to be chosen and vice versa.

There are many ways to go from such a weighted evidence measure to a
Ž .probabilistic choice function. Like McKelvey and Palfrey 1995, 1998 and

Ž .Anderson et al. 1997, 1999 , we opt for the multinomial logit specification
Ž .McFadden, 1974 because of its computational advantages when it comes
to empirical estimation. The interpretation is that the player assesses the
weighted evidence with some error andror adds idiosyncratic values to the
expected utilities, and then chooses the action which from hisrher per-
spective has the greatest net favorable evidence. Hence, the probability of
choosing action j is

t t tp V ; n , u ' exp y V ; n , u r exp y V ; n , u . 4Ž . Ž . Ž . Ž .ˆ Ýj j l
l

Ž . t Ž .Note that Eq. 4 defines a mapping from V to D A , and hence is a
beha¨ior rule as defined abstractly above. With a slight stretch of notation,

Ž .we can associate the parameter vector n , u with a rule r g R, in which
Ž .case the family of behavioral rules R can be represented by n , u -space.

Our approach to representing the huge space of potential rules is to
Ž .posit a small set of evidences which, when combined as in Eq. 3 and used

Ž .in Eq. 4 , spans a large space of plausible and empirically relevant rules.
Since the concept of evidence-based rules can be applied to one-shot
behavior as well as dynamic behavior, the predicted behavior in the first
period of play should be consistent with the predicted behavior of bound-
edly rational theories for one-shot games.

In one-shot games, SW found substantial support for level-n thinking. A
Ž .level-n player believes that all others are level- n y 1 players who

believe . . . are level-1 players who believe that all others are level-0 types
Ž .who choose randomly. In a repeated guessing game, Nagel 1995 and

Ž .Stahl 1996a found substantial support for similar thinking and rule
learning. These types were investigated because they correspond loosely to

Žthe iterated levels of rationalizability Bernheim, 1984 and Pearce, 1984;
. Ž .see also Stahl, 1993 , and Binmore’s 1987 idea of truncated eductive

reasoning. It is also reasonable to ask whether a player who seems to use a
level-1 rule in a one-shot game would continue to do so in subsequent
plays of that game, especially if, say, the level-2 rule would have produced
higher payoffs. The evidence-based rules described below are an extension
of the level-n theory to a dynamic situation with learning opportunities.

We now posit four kinds of evidence such that each kind corresponds to
one of the SW level-n types. The first kind of evidence comes from a
‘‘null’’ model of the other players. The null model provides no reason for
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the other players to choose any particular strategy, so for the first period of
play, by virtue of insufficient reason, the belief is that all actions are
equally likely. The expected utility payoff to each available action condi-

Ž 1. 0tional on the null model is y V ' Up . We can interpret y as evidence1 j1
in favor of action j stemming from the null model in the initial period of

Ž .play with no prior history . Note that if this is the only kind of evidence
Ž .given any weight, then the probabilistic choice function, Eq. 4 , would

Ž . 0result in a possibly noisy best response to p , which is precisely the
level-1 archetype of SW.

Ž .For later periods t ) 1 , the players have empirical data about the past
choices of the other players. It is reasonable for a player to use simple

Ž . 0 1 w xdistributed-lag forecasting: 1 y u p q u p for period 2 with u g 0, 1 .
tŽ . 0Ž . 0Letting q u denote the forecast for period t and defining q u ' p ,

the following forecasting equation would then apply for all t G 1:

qt u ' 1 y u qty1 u q u pty1.4 5Ž . Ž . Ž . Ž .

Ž t . tŽ .The expected utility payoff given this forecast is y V ;u ' Uq u . We1
Ž t .call y V ; u the ‘‘level-1’’ evidence in favor of action j stemming fromj1

the null model and prior history.
The second kind of evidence is based on the SW ‘‘level-2’’ player who

believes all other players are level-1 players. We define the archetypal
Ž tŽ ..level-2 player as one whose belief about the other players is b q u ,

tŽ .which puts equal probability on best responses to q u and zero probabil-
ity on all other actions.5 The expected utility conditional on this belief is
Ž t . Ž tŽ .. Ž t .y V ; u ' Ub q u , and we call y V ; u the ‘‘level-2’’ evidence in2 j2

favor of action j. Note that if this is the only kind of evidence given any
Ž .weight, then the probabilistic choice function, Eq. 4 , would result in a

Ž .noisy best response to the best response to the uniform prior in period 1 ,
which is precisely the level-2 archetype of SW.

In testing alternative theories, it is very useful to have an encompassing
model; thus, we want to incorporate Nash equilibrium theory within the
model. Letting pNE denote a Nash equilibrium of G, y ' UpNE provides3
yet another kind of evidence on the available actions. Note that this kind
of evidence is not well defined for games with multiple Nash equilibria.
Since the resolution of this multiplicity problem is beyond the scope of this
paper, our experimental design uses only games with a unique Nash

4An alternative specification could be to set u s 1rt, which would generate the empirical
frequency as the forecast as in fictitious play. However, a declining weight on the most recent
observation may not be empirically true. Our specification allows u to be learned, and it is
mathematically possible that the learned value of u could decline as 1rt. Thus, fictitious play
is a possible dynamic path.

5This is the limit of a logistic best response as the precision goes to infinity.
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equilibrium. Again, if this is the only kind of evidence given any weight,
Ž .then the probabilistic choice function, Eq. 4 , would result in a noisy best

response to the Nash prior, which is precisely the naive Nash archetype of
SW.

Finally, we would like to represent behavior that is uniformly random in
Ž .the first period i.e., SW level-0 and ‘‘follows the herd’’ in subsequent

periods. Following the herd does not mean exactly replicating the most
recent past, but rather following the past with perhaps some inertia as

tŽ . Ž t . w tŽ .xrepresented by q u . Accordingly, we define y V ; u s ln q u , so if0
only this evidence were given positive weight, then the logit formula, Eq.
Ž . tŽ .4 , would reproduce q u as the probabilistic choice function.

Note that a single scalar value of u is hypothesized for all its uses in
Ž t .y V ; u , k s 0, 1, and 2. This simplifying assumption can be defended byk

Žarguing that a player begins with a tendency to follow the herd i.e.,
Ž t ..evidence y V ; u , and then perhaps reasons further. If the player0

Ž t .reasons one step further, then the player projects hisrher own y V ; u0
Ž t .onto the other player, thereby generating evidence y V ; u with the same1

u . If the player reasons one step further, then the player projects hisrher
Ž t . Ž t .own y V ; u onto the other player, thereby generating evidence y V ; u1 2

with the same u .6
Ž t .In summary, we have defined four kinds of evidence: herd y V ; u ,0

Ž t . Ž t .level-1 y V ; u , level-2 y V ; u , and Nash y , which we denote com-1 2 3
Ž t .pactly by a J = 4 matrix Y V ; u . Given the weight vector n s

t tŽ . Ž . Ž .n , . . . , n 9, the weighted evidence vector is y V ; u , n s Y V ; u n , and0 3
Ž .the probabilistic choice function is given by Eq. 4 . The archetypal level-1

Ž .rule corresponds to the weight vector 0, n , 0, 0 , etc. But there is no1
reason to restrict the rule space R to only these four archetypal rules. By
letting n be a continuous variable, we generate a five-dimensional family

Ž .of behavior rules characterized by n , . . . , n , u . Each point in this rule0 3
space defines a unique behavioral rule resulting from a combination of the
four kinds of evidences. Rule learning within this family of evidence-based
rules amounts to adjusting the weights on these four kinds of evidence.

For another interpretation, we can rewrite the combination of level-1,
w Ž . Ž Ž .. NE xlevel-2, and Nash evidence as ¨U n q u q n b q u q n p , where˜ ˜ ˜1 2 3

n ' n r¨ and ¨ ' Ý3 n . Thus, the weighted evidence entails an im-˜k k ks1 k
� Ž . Ž Ž .. NE 4plicit mixture of the primitive priors q u , b q u , and p correspond-

ing to the above three models of other players. Each n can be interpreted˜k
as the player’s point estimate of the proportion of other players who can

6 Ž .In Stahl 1999 , level-1 evidence was defined isomorphically, but level-2 evidence and herd
behavior implicitly assumed u s 1. In addition to the foregoing defense of having u affect all

Ž .level-n rules n s 0, 1, 2 , preliminary investigations found a substantial improvement in the
fit to the experimental data.
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be characterized by each of these archetypal models. Under this interpre-
tation, adjusting the n weights can be viewed as learning about those
population proportions.

d. Initial Log-Propensities and Transference

An individual player starts with initial log-propensities to use these rules
Ž .in period 1, which we denote w n , u , 1 , and the log-propensities evolve

Ž .according to the law of motion, Eq. 2 . It remains to specify this initial
log-propensity function. A natural and parsimonious approach is to specify
Ž . Ž .w ?, 1 as a normal distribution in rule space with a mean n , u and

standard deviation s to be estimated from the data. While simplistic, it is
Ža proper prior on the rule space and is compatible when s is relatively

.small with SW who found that the vast majority of participants appeared
to use one rule for a variety of one-shot 3 = 3 symmetric games.

Anticipating the experiment which will consist of two ‘‘runs’’ of 15
periods each with one game in the first run and a different game in the
second run, we must also specify the initial log-propensities for the first

Ž .period of the second run i.e., period 16 . One approach would be to
Ž .specify w ?, 16 as another normal distribution in rule space with a poten-

tially independent mean and standard deviation. However, this approach
would involve the addition of five more parameters. Another approach
would be to assume that one initial log-propensity applies to both periods,
as if nothing that was learned during the first run is transferred to the
second run. A third alternative would be to assume complete transference;
i.e., the log-propensity for the first period of the second run is the same as
it would be if there had been a sixteenth period of the first run. We opt for
a convex combination of the second and third alternatives which requires
only one additional parameter, i.e.,

w n , u , 16 s 1 y t w n , u , 1 q t w n , u , 15q , 6Ž . Ž . Ž . Ž . Ž .
where ‘‘15q ’’ indicates the update after period 15 of the first run, and t is
the transference parameter. If t s 0, there is no transference, so period 16
has the same initial log-propensity as period 1; and if t s 1, there is
complete transference, so the first period of the second run has the

Žlog-propensity that would prevail if it were period 16 of the first run with
.no change of game . Note that this approach can be extended to multiple

Žruns with different games with no need for additional parameters assum-
.ing a constant transference t .

e. The Likelihood Function
h Ž h1 hT . � 4TLet s ' s , . . . , s g 1, 2, 3, 4, 5 denote the choices of participant

h for an experiment with T periods. The theoretical model put forth to
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Žexplain these choices involves nine parameters: b ' n , n ,0 1
. Ž .n , n , u , s , b , b , t . The first five parameters n , . . . , n , u represent2 3 0 1 0 3

Ž .the mean of the participant’s initial log-propensity w ?, 1 , and s is the
standard deviation of that log-propensity; b and b are the learning0 1

Ž . Ž .parameters of Eq. 2 ; and t is the transference parameter in Eq. 6 for
the initial log-propensity of the second run.

hŽ .Letting w n , u , t N b denote individual h’s probability to use rule
Ž . Ž t.n , u in period t with information V given the nine-parameter vector b ,
the resulting probability of choosing action j is

pht b s p V t ; n , u w h n , u , t N b d n , u . 7Ž . Ž . Ž . Ž . Ž .ˆHj j

Then the log-likelihood of sh conditional on b is

T
h ht

htLL b ' ln p b . 8Ž . Ž . Ž .Ý s
ts1

Ž .The computation of Eq. 7 entails numerical integration on a grid; details
are available from the author upon request.

f. Limit Beha¨ior

Observe that if behavior converges, the limit behavior will be a Nash
equilibrium. To see this, suppose to the contrary that empirical frequency
converges to a non-Nash limit point. But then the rule which puts infinite
weight on level-1 evidence and no weight on any other evidence, since it
will generate the best response to the empirical distribution, will perform
at least as well as any other rule, and hence will increase in likelihood,
thereby moving the empirical frequency away from the non-Nash limit
point}a contradiction. However, if there is an upper bound on the
evidence weights n , then the limit behavior will be a quantal response
equilibrium.

ŽFurther, observe that since in symmetric games when the distribution is
.Nash, then level-1, level-2, and herd behavior are all the same all the rules

will perform equally well. Hence, if behavior converges, ‘‘rule learning’’
will become negligible as time advances.7 Thus, rule learning will be
important only in cases for which behavior does not converge or in the
early periods of convergent cases. This fact justifies our focus on rule
learning in the ‘‘short run’’ and our experiment design.

7 Ž .This is reminiscent of the principle, from Stahl 1993 , that ‘‘being right is just as good as
being smart.’’
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3. EXPERIMENT DESIGN AND DATA

Ž .In contrast to the experimental design of Stahl 1999 , which presented
participants with 15 games in each of two periods, the current design
presents participants with one game for 15 periods. The former experiment
was a follow-up to SW to provide more observations per participant
facilitating participant-by-participant estimation of the level-n model, and
only secondarily to obtain data to test the learning model. To provide a
fuller test of the learning model, we need many more periods of data, but
to identify different rules we need strategic variety. That is, we need either

Ža variety of simple games such as the 3 = 3 games of the former
.experiments or more complicated games. The second route is better

suited for gathering multiperiod data within the time constraints of an
experiment.

Ž .With four archetypal rules n ) 0 for just one k , we reasoned that ank
appropriate 5 = 5 game should be able to elicit distinct behavior for these
four archetypal rules as well as ‘‘interior’’ rules. We used a computer to
search for symmetric games which satisfy the following criteria:

Ž .1 the first strategy is a strict Nash equilibrium and there are no
other symmetric Nash equilibria;

Ž .2 the second strategy is the best response to uniform;
Ž .3 the third strategy is the twice-iterated best response to uniform

Ž .i.e., best response to the second strategy ;
Ž . Ž4 the fourth strategy is the response of the ‘‘worldly’’ type Stahl

.8and Wilson, 1995 ; and
Ž .5 the fifth strategy is either strictly dominated or the maximax

choice.

Far from giving the evidence-based rule learning theory its ‘‘best shot,’’
these criteria create the greatest possibility of falsification: if different
rules would produce different observable behavior and the no-rule-learn-
ing hypothesis cannot be rejected, then that would be much more damag-
ing than a nonrejection of the null with data in which the different rules do
not produce different observable behavior.

In addition, payoffs were confined to be integers from 0 to 99. Searching
over billions of randomly generated 5 = 5 matrices yielded about a dozen
candidate games.9 From this group we eliminated games for which the

8 The ‘‘worldly’’ type is roughly equivalent to an evidence-based rule with weights n s 0.015,1
n s 0.035, n s 0.05. Note that n 0 is irrelevant for the first-period prediction.2 3

9 We are not counting the equivalent matrices obtained by permuting the rows and
columns. Confining payoffs to be integers leaves 10025 s 1050 possible matrices, so random
generation ensures statistically adequate sampling of all possible matrices.
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Ž .Nash equilibrium was very focal because it had a large payoff 80 or more ,
Ž .or very antifocal because it had a very small payoff 10 or less . Following

this selection, the rows and columns were permuted so a particular
behavior rule would not be associated with a particular strategy in all
games.

The payoffs for the ‘‘row player’’ in the four games we selected are
shown in Fig. 2. Payoffs are in probability units for a fixed prize of $2.00
per game.10 The labels ne, b1, b2, wd, dm, and mx in Fig. 2 denote

Ž . Ž .respectively the strategies that satisfy criteria 1 ] 5 above.
Ž .Each game ‘‘Decision Matrix’’ was presented on the computer screen

Ž .see Fig. 3 . The participant made a choice of a pure strategy by clicking on
a row of the matrix, which then became highlighted. In addition, the
participant could enter a hypothesis about the choices of the other players,
and cause the computer to calculate hypothetical earnings, which were
then displayed on the screen. This feature was provided for two reasons.
First, three of the kinds of evidence, level-1, level-2, and Nash, require
calculation of the expected utility payoff against a prior, and this is difficult
in a 5 = 5 game. Second, reducing calculation noise will sharpen the
theory predictions, thereby increasing its falsifiability.

After each period, each participant was matched with every other
participant and received the average payoff. Following this, each partici-
pant was shown hisrher payoff and the aggregate choices of the other
participants. The most recent period’s data was displayed on the main
screen, but participants could access the entire past record with the click
of a mouse button. The lotteries that determined final monetary payoffs
were conducted following the completion of both runs. Delaying the
lotteries avoids the possibility that lottery outcomes bias the reinforcement

1of rules. The average payment per participant was $28.00 for a 2 -hour2

session.
At the beginning of the experiment, participants were given extensive

Ž .instructions both on-screen and read aloud regarding the computer
interface, the on-screen calculator, and the manner in which their choices
would determine their payoffs. The experiment script is available from the
author upon request. All participants passed a quiz on these matters.

10 Binary lotteries might not succeed in inducing risk neutrality. On the other hand, binary
lottery payoffs also admit nonexpected utility formulations of preferences as long as people

Ž .are probabilistically sophisticated i.e., satisfy the compound lottery reduction axiom and
Ž .utility is monotonic in the probability of winning Machina and Schmeidler, 1992 . Under

these strong conditions, ‘‘expected utility’’ can be replaced everywhere in this paper by
‘‘expected probability of winning.’’
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FIG. 2. The four games.
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FIG. 3. Computer screen.

The experiment consisted of four sessions of 22, 23, 24, and 22 partici-
pants.11 The participants were predominantly upper-division undergradu-
ate students and some graduate students attending the first and second
1995 summer sessions at the University of Texas. Each session consisted of
two runs of 15 periods each. In the first run, one of the four games was
played for 15 periods, and in the second run, another game was played for
15 periods. The specific order of presentation in the four sessions was
Ž . Ž . Ž . Ž .II, I , III, IV , IV, III , and I, II respectively. In each run, the first five

11 In two sessions, there was one participant who failed to make a choice in one period of
one of the runs. In subsequent periods of that run, the computer excluded that participant’s
choices when calculating payoffs and the history for the other participants. Consequently, we
did not estimate a likelihood function for these participants and did not include them in the
above totals. However, when calculating the likelihood function for all other participants, the
history of play used in this calculation was the exact history seen on the computer screen,
which included the errant participant’s choices before his or her mistake but not afterwards.
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periods were 3 minutes each, and the last ten periods were 2 minutes
each.12

Figures 4a]h display the empirical distribution of choices for each of the
runs. In two runs, behavior converged to the unique Nash equilibrium
Ž .13S627r2 and S810r2 ; in addition, in S629r2, the Nash equilibrium be-
came the modal response. In all runs except S629r2, the modal response in

Žthe first period was the best response to the uniform prior level-1
. Ž .behavior . For the two runs of game I S627r1 and S815r2 , there is a

curious persistence of ‘‘cooperative’’ behavior in that a large portion of
Ž . Ž .participants chose the top row A , which if everyone chose it would yield

the symmetric Pareto dominant outcome. While the game is technically a
repeated game, it is unusual to observe cooperative behavior in a group

Žthis large. Further data analysis revealed that row A was often a best or
.nearly best response to the past frequency distribution; indeed, there are

quantal response equilibria in the neighborhood of this frequency distribu-
tion. Subsequent pilot experiments with different matching protocols de-
signed to frustrate intertemporal effects produced similar data, thereby
convincing us that the data used in this paper are not the result of
supergame strategies.14

4. RESULTS

We divide the results into two sections. The first section deals with
hypothesis tests, and the second section analyzes the parameter estimates
for the individual participants. Computational details are available from
the author.

a. Hypothesis Tests

Ž .Maximizing the log-likelihood LL function for each participant, and
then summing over the 91 participants, the aggregate maximized LL is
y1896.44. We report in this subsection selected results on hypotheses that

12 These durations were chosen after reviewing the responses to a debriefing questionnaire
following a pilot experiment. Fewer than 10% of the pilot participants indicated that they
wanted more time. Nonetheless, it is possible that the time constraint could have been
binding for some participants and thereby inhibit their ability to use or learn more sophisti-
cated rules.

13 Ž . Ž .‘‘S xxxr y’’ refers to Session xxx date and run y 1 or 2 .
14 Ž .The alternative matching protocols included i matching each participant with a differ-

Ž .ent random sample of 25% of the other participants each period, and ii ordering the
participants around a virtual circle and having the effect of one’s choice move counterclock-
wise and only part way around the circle. Further, several intertemporal punishment strate-
gies were hypothesized, tested, and rejected.
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FIG. 4. Distribution of choices.
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FIG. 4. }Continued.



DALE O. STAHL124

FIG. 4. }Continued.
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FIG. 4. }Continued.
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TABLE I
Aggregate Hypothesis Tests

Hypothesis LL d.f. p -

y5 87Noise y4393.75 819 10
y486Nash y3917.14 637 10
y54No Rule Lrn y2303.01 273 10
y120Cournot y2829.30 637 10
y146Homogeneous y3060.88 810 10
y1 4n s 0 y2014.41 91 100
y120n s 0 y2315.34 91 101
y16n s 0 y2022.61 91 102
y7n s 0 y1987.33 91 103
y64u s 0 y2167.25 91 10
y58b s 0 y2151.30 91 101
y49t s 0 y2125.14 91 10
y13b F 1 y2012.66 91 100

Unrestricted y1896.44 0

impose restrictions on the parameters which lower the maximized LL
function. These results are summarized in Table I.

RESULT 1. The model is informative and fits the data much better than
Nash equilibrium theory.

In multiple regression analysis, the F-test for the whole model serves as
Ža test of whether the model is informative i.e., fits the data better than

.pure noise . In the context of maximum likelihood estimation, the equiva-
lent test uses the null hypothesis of uniformly random play in all games
and periods. This null hypothesis yields an aggregate LL value of y4393.75
Ž Ž ..s 30 = 91 = ln 5 . Since the model is capable of generating uniformly

Ž .random play by restricting s s 0, n s 0, b s 1, and b s 0 , the null is0 1
a nested hypothesis. Therefore, twice the log-likelihood difference is

2 Ž .distributed x with 819 s 9 = 91 degrees of freedom, which has a
p-value of less than 10y587; thus, the model is clearly informative.

As another benchmark, we also consider the Nash equilibrium model.
Of course, in its pure form, it is incompatible with the data because
participants often make non-Nash choices. It is more interesting to con-
sider the Nash model extended to include errors. Observe that by setting

Ž . Ž .n s 0, ;k / 3, Eqs. 3 ] 4 define a Nash-based probabilistic choicek
function, with the interpretation of n as the precision of the participant’s3
expected utility calculation given the Nash belief. The hypothesis that
participants make their choices according to this error-prone Nash model
can be represented by a parameter restriction on our full model: namely,
s s 0.25, n s 0 for k / 3, b s 1, and b s 0. In other words, thisk 0 1
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Nash-based model is nested within our full model as a restriction on seven
15 Ž .parameters. For each participant, we found the n , u values that3

maximized the log-likelihood of hisrher choices. The sum over all 91
participants of these maximized LL values was y3917.14. Compared with

Ž .the totally random prediction y4393.75 , this is a significant improvement
Ž y104 .p - 10 with 2 = 91 degress of freedom . However, the full model
Ž . Žy1896.44 is a very significant improvement over this Nash model p -

y486 .10 with 7 = 91 degrees of freedom . In other words, even after
adjusting for the large number of parameters in the full model, the full
model is astronomically more likely to have generated the data than the
Nash-based model. An enhanced Nash model with learning is also re-
jected.

RESULT 2. We can reject the hypothesis of no rule learning.

Ž .By rule learning we mean that the probabilities w to use rules change
Ž .from period to period in accordance with the law of motion, Eq. 2 . The

null hypothesis of no rule learning implies the restriction that b s 1 and0
Žb s 0, and hence is a nested hypothesis. Note that since t becomes1

.irrelevant, these restrictions entail three degrees of freedom. When we
impose these restrictions, the aggregate maximized LL decreases to

2 Ž .y2303.01. Twice the difference is distributed x with 273 s 3 = 91
degrees of freedom and has a p-value less than 10y54. Thus, we can
strongly reject the hypothesis of no rule learning.

Ž .On an individual basis, for 50 of 91 54.9% of the participants, we can
reject the no-rule-learning hypothesis. This is an improvement over Stahl
Ž .1999 , where no rule learning could be rejected for only 39.7% of the
participants.

As another test, we considered just the restriction that b s 0 while1
allowing b to be free. The dynamic equation of motion simplifies to0

w r , t q 1 s b w r , t . 29Ž . Ž . Ž .0

Ž . Ž .This hypothesis allows the rule probabilities w to change when b / 1 ,0
Ž . Ž .but only by deepening b ) 1 or lessening b - 1 the initial log-pro-0 0

pensity differences across rules, completely independent of the perfor-
Ž tq1.mance information g r, V . When we impose this restriction, the

aggregate maximized LL decreases to y2151.30. Twice the difference is
distributed x 2 with 91 degrees of freedom and has a p-value less than
10y58. Thus, we can reject the hypothesis that b s 0 for all participants.1

Ž .Furthermore, on an individual basis we find that for 46 of 91 50.55

15Since we have s s 0.25, this nested Nash model allows some ‘‘trembling’’ to other rules
Ž .albeit a negligible amount ; the u parameter is theoretically relevant although of no
practical significance.
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participants, we can reject the hypothesis that b s 0. Thus, about half of1
the participant population appears to have learned which rules were

Ž .better. The comparable result in Stahl 1999 was only 19%.
If we had only two dimensions or only a small number of rules, then we

could easily present a potentially revealing plot of w over time. However,
with five dimensions, it is a challenge to present a picture of how w
changes over time. After an extensive investigation of the modes of the w
distribution, we concluded that the location of the ‘‘dominant’’ mode
conveys useful information. Specifically, for each period we identified all
grid points for which w was within 50% of the maximum w for that period,

Ž .and computed the w-weighted average of those grid points; call this n* t
U Ž .for period t. Figure 5 displays n t , k s 0, . . . , 3, averaged over the 46k

participants with statistically significant b estimates. While aggregation1
masks individual differences, Fig. 5 sheds light on what rules participants
learned. Note that the vertical scale is logarithmic. The initial weight given
to the level-2 evidence and the Nash evidence is quite small and increases
substantially over time. Indeed, the weight on level-2 evidence increases by
as much as 4-fold, while the weight on Nash evidence increases 2.3-fold.
This is understandable, since rules with more weight on level-2 evidence
yield consistently larger ex post expected utility than other rules, while the
aggregated reinforcement of Nash evidence is compromised by the infre-
quent convergence to Nash equilibrium. These changes are even more
dramatic for individuals with above average b estimates. Figure 5 also1
reveals modest increases in the averaged weights for level-1 and herd

FIG. 5. Coordinates of dominant w mode for learners.
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evidences. It is noteworthy that level-1 evidence is devalued during most of
the second run when level-2 evidence is augmented.

RESULT 3. We can reject ‘‘Cournot dynamics.’’

So-called Cournot dynamics have been popular because of their simplic-
Žity and explanatory power e.g., van Huyck et al., 1994; Cheung and

.Friedman, 1997, and Friedman et al., 1995 . In our context, Cournot
Ž t .dynamics is equivalent to zero weight on all evidence except y V , u , and1

no rule learning.16 Thus, the reduced model would have only two parame-
Ž .ters n , u . Maximizing the log-likelihood function with respect to these1

two parameters for each individual participant and summing over all 91
participants, the aggregated LL decreases to y2829.30. Compared to the
no-rule-learning model, twice the difference is distributed x 2 with 364
Ž . y67s 4 = 91 degrees of freedom and has a p-value less than 10 . Com-
pared to the full model, twice the difference is distributed x 2 with 637
Ž . y120s 7 = 91 degrees of freedom and has a p-value less than 10 . Thus,
we can strongly reject the Cournot model in favor of both the no-rule-

Ž .learning model but other rules present and the full rule-learning model.
An enhanced Cournot model with learning is also rejected.

RESULT 4. We can strongly reject the hypothesis that the population of
participants is homogeneous.

If the population of participants is homogeneous, then there should be a
single parameter vector b that applies to all individuals. Estimating the
model under this restriction, the maximized LL decreases to y3060.88.

ŽThis hypothesis is nested within the full model entailing 9 = 90 parameter
. 2restrictions , so twice the difference is distributed x with 810 degrees of

freedom, and has a p-value of less than 10y146. Thus, we strongly reject the
homogeneity hypotheses. We also tested and rejected the homogeneity

Ž y22 .hypothesis for each session separately the smallest p-value is 10 .
This result indicates that even though the full model contains 819

parameters, we have not overfit the data by allowing too many parameters.
There are 91 = 30 s 2730 observations, so there remain 1911 degrees of

Ž .freedom 21 per participant .

RESULT 5. Each of the nine parameters makes a statistically significant
contribution in the aggregate.

To test whether, say, n makes a statistically significant contribution in0
the aggregate, we maximized the log-likelihood function for each partici-
pant while holding n s 0, and then summed over all 91 participants.0
Twice the difference between this restricted LL value and the unrestricted

16 Strict Cournot dynamics would have u s 1.
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value of y1896.44 is distributed x 2 with 91 degress of freedom. In this
Ž .manner, we tested n k s 0, . . . , 3 , u , b , and t . We did not test s s 0k 1

Ž .due to the singularity of the initial log-propensity function, w ?, 1 , at
s s 0. For tests involving b , see Result 6 below. Table I lists the results.0
We clearly reject each hypothesis that the corresponding parameter is 0
for all participants. Therefore, we cannot safely drop any of these parame-
ters from the model without a statistically significant loss in explanatory
power.

On an individual participant basis, the parameters that are most fre-
quently significantly different from 0 are n , u , b , and t . This suggests1 1
that the level-1 evidence receives substantial weight, the recent past is
used in forecasting the present, rule performance influences rule choice,
and learning is transferred across games.

We hasten to point out that not being able to reject n s 0 for some kk
and some participant does not imply that the corresponding evidence could
be dropped from the model for that participant because rule learning
could cause n to become significant over time.k

b. Indï idual Parameter Estimates

Table II presents the variance]covariance matrix of the maximum
likelihood estimates of the nine parameters over the 91 participants. The

Ž . Ž .simple arithmetic averages ‘‘avg’’ and standard deviations ‘‘std’’ are
given at the bottom of Table II. However, since a logarithmic scale was

Ž .used for the n parameters, a geometric mean ‘‘geo’’ was also computedk
and reported. These means reveal that the predominant initial evidence

TABLE II
Variance]Covariance of Individual Parameter Estimates

n n n n u s b b t0 1 2 3 0 1

n 2.758 0.1174 0.0051 0.0029 y0.0746 y0.0192 0.3747 y1.233 y0.00460
n 3.724 0.3301 0.1996 y0.0638 0.6384 y0.1428 y1.405 0.10441
n 0.2650 0.1045 y0.0164 y0.0569 y0.0420 y0.1688 0.05182
n 0.6874 y0.0537 0.2806 y0.0092 y0.3332 0.05873
u 0.1548 y0.0074 y0.0301 y0.3587 0.0230
s 2.375 0.0117 0.0589 y0.0061
b 0.2136 0.1992 0.00320
b 3.573 y0.05621
t 0.2176
avg: 1.120 1.354 0.1913 0.2580 0.4322 1.145 1.256 1.535 0.4731
std: 1.652 1.919 0.5119 0.8245 0.3912 1.533 0.4596 1.880 0.4647
geo: 0.0793 0.1218 0.0095 0.0089
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weight is on level-1 evidence. The individual parameter estimates for the
91 participants are in the Appendix.

RESULT 6. The distribution of n weights has three modes.

We sought a parsimonious means of capturing the distribution of
individual parameter estimates. In particular, we were curious about the
initial distribution of evidence weights n , since they correspond to the SW
archetypes. To explore this, we constructed a histogram of the four n k
estimates using high]low categories17; thus, our histogram had 16 cells,
shown in Table III.

Ž .We see that the vast majority 73.6% of participants placed little initial
weight on level-2 and Nash evidence. With 16 cells and 91 observations,
under the null hypothesis of a uniform distribution there is a 95%
probability that any given cell will contain 10 or fewer observations. Hence,
three cells fail this test, meaning that we can reject the hypothesis of a
uniform distribution. Indeed, these three cells contain 58 of the 91 partici-

Ž .pants 63.7% .
It is also insightful to ask whether the parameter estimates are dis-

tributed uniformly within each of the three dominant cells, the alternative
hypothesis being that they are clustered into modes within the cells. To
test this, we compare the mean of the n estimates in a cell of Table III
with the midpoint of that cell and, adjusting for the number of observa-
tions, we find that the mean is at least two standard deviations away from
the midpoint in the direction of the ‘‘low’’ boundary. Thus, we reject the
hypotheses of uniform distributions within cells, suggesting instead that

17 Ž . Ž .Using the logarithmic scale, 1 q ln 5rn rln 4 G 4 defined the ‘‘low’’ category; in otherk
words, the median or higher grid point was declared low. We adjusted these estimates to take
account of statistical significance.

TABLE III
aHistogram of Adjusted n Estimates

Ž .n , n2 3
LL LH HL HH

LL 15 1 0 2 18

LH 28 2 4 6 40

Ž .n , n HL 15 0 2 0 170 1

HH 9 3 1 3 16

67 6 7 11 91

Key: L s low; H s high.
aCoefficients insignificant at 25% jointly tested and restricted to 0.
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the means of each cell characterize a definite mode of the overall distribu-
tion. These three modes correspond to three ‘‘types’’ of initial log-propen-

Ž . Ž . Ž . Žsities: i ‘‘null’’ n f 0 for all k , ii level-1 n ) 0 and n f 0 for allk 1 k
. Ž . Ž .k / 1 , and iii herd followers n ) 0 and n f 0 for all k / 0 .0 k

An alternative to this crude histogram would be kernel density estima-
tion. However, only 91 noisy observations and four dimensions makes
kernel density estimation unreliable. On the other hand, for just the two

Ž .dimensions n , n , the 91 observations are sufficient for reliable kernel0 1
estimation, and we find strong statistical evidence for the three modes
close to the mean of the data in the three dominant cells of our crude
histogram. Figure 6 presents the estimated density of n and n with three0 1
clear modes.

Given these three modes, it is natural to look for correlations between
these modes and the estimates of the other parameters. The mean esti-
mates of u , s , b , and t for these three modes are statistically indistin-0
guishable. However, we found the learning parameter b to be signifi-1

Ž .FIG. 6. Kernel estimated density of n , n .0 1
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cantly larger for the first and third mode. Since it turns out that level-1
evidence is reinforced, it is important that those participants who do not
initially put much weight on level-1 evidence eventually learn to do so;
hence, it makes sense that b is higher for the first and third mode. We1
also found that the mean estimates over the 13 other cells of our his-
togram were significantly higher for s and lower for b and t . This finding1
suggests that the 58 participants in the three dominant modes had much

Ž .sharper initial dispositions low s , tended to respond more to perfor-
Ž .mance high b , and transferred more of what they learned across the two1

runs than the other participants.

RESULT 7. We cannot reject asymptotic stability for most participants.

Ž .Asymptotic stability requires b - 1. For 60 66% of the participants,0
the estimated b exceeds 1, and the mean also exceeds 1, which seems to0
suggest explosive dynamics for the majority of participants.18 We therefore
reestimated the model with the restriction that b F 1, and found that we0

Ž .could not reject the restriction at the 5% level for 69 75.8% of the
participants; that is, only one-fourth of the participants appear to have
explosive dynamics. On the other hand, the aggregate test for all partici-
pants rejects the restriction with a p-value of 2 = 10y14.

5. DISCUSSION

This paper tested a theory of boundedly rational behavioral rules, and a
theory of rule learning based on past performance. The boundedly rational
rules can be interpreted as weighing e¨idence for and against available
actions based on archetypal models of the other players. An econometric
model was specified and an experiment was designed to fit and test this
model.

Our model fits the data much better than random noise or an error-prone
Nash model. We strongly reject the hypothesis of no rule learning and the
hypothesis of Cournot dynamics in favor of our model. The maximum
likelihood estimates of the parameters reveal substantial heterogeneity in
the population of participants both in the initial log-propensities over rules
and the extent of learning. A statistical test of homogeneity strongly rejects
that hypothesis. After exhaustive testing of each of the nine parameters of

18 To ensure convergence of the b estimates, an upper bound of 2.0 was imposed on the0
range. For five participants, the estimated b hits this boundary, but without the upper0
bound, the optimization subroutine tended to increase b indefinitely; however, the log-like-0
lihood values increased only negligibly for b ) 2, and the other parameter estimates0
changed negligibly. Hence, the upper bound is innocuous.
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the rule-learning model, we rejected the hypotheses that any one of them
could be dropped from the model.

Herd evidence y and level-1 evidence y receive the most initial weight0 1
Ž .on average. However, one should not conclude that level-2 evidence y2

Ž .and Nash evidence y are unimportant, since they can become important3
via learning. The average estimate of b is 1.53, so substantial learning1

Ž tq1.can occur. Further, examining the reinforcement function g n , u , V ,
Ž .we found that the ‘‘99% best’’ rules in our n , u rule space generally

included high values for n and n . Knowing that the no-rule-learning2 3
hypothesis was strongly rejected, there is no doubt that this reinforcement
of level-2 and Nash evidence contributed to the success of the model. We

Ž .also presented graphical evidence Fig. 5 showing substantial changes in
the weight given level-2 and Nash evidence over time, consistent with rule
learning and increasing sophistication.

Using a histogram approach and kernel density estimation, we were able
to identify three modes in the distribution of the initial evidence weights n .
This suggests that it might be possible to specify a parsimonious finite

Žmixture model that explains the data as well when accounting for the
.difference in the number of parameters .

Ž .While we could not reject asymptotic stability b F 1 for three-fourths0
of the participants, it may trouble some readers that 25% appear to have
explosive dynamics. However, it should be noted that the only way for the

Žprobabilistic choice function to eventually put unit mass on one rule such
.as the Nash rule is to have explosive dynamics.

An apparent weakness of our learning theory is the implicit assumption
that participants evaluate the whole five-dimensional space of rules R and
update their rule probabilities w accordingly. It might seem more realistic
to assume that the players gather incomplete samples of rule performance
measures depending on similarity or closeness with the rules recently used.
Unfortunately, we cannot directly observe this sampling and evaluation
process. On the other hand, rules that are ‘‘close’’ in the brains of human
subjects are not necessarily those that are close in our parametric repre-

Ž .sentation and vice versa . In other words, a rule that involves a large
change in the parameter space of our representation is not necessarily

Ž .more distant, and hence less likely to be evaluated. Stinchcombe 1997
has shown that artificial neural networks are universal approximators even
for arbitrarily small parameter sets; that is, small changes in the parameter
weights of a neural network can span a large function space. Therefore, it
is theoretically possible that local experimentation in the weight-space of a
brain’s neural network could in fact span a space of rules as large as and
similar to our five-dimensional space of evidence-based rules.
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APPENDIX: INDIVIDUAL PARAMETER ESTIMATES

0 1 2 3ID n n n n u s b b t LL0 1

1 0.54088 0.0000 0.0000 0.0000 1.0000* 0.2500 0.8726 0.0000 0.9998 y30.748
† † †2 2.5038 0.1977 0.0636* 0.0000 0.0000 0.2500 1.2112 0.5988 0.0868 y23.110
† † † †3 0.0000 4.4411 2.5065 0.9818 0.0480 0.5972 1.61448 0.2428 0.6661* y10.737

4 2.4725 4.9986* 0.9942* 1.4766 0.0000 0.3547 0.8123 0.12488 0.02218 y15.233
† † † †5 0.0625 4.9971 0.5292 0.4845* 0.9968 0.2500 1.1034 0.6556* 0.0000 y0.227

† † †6 0.0000 1.4120 0.02008 0.0000 0.7680 0.4754 2.0000 5.0000* 1.0000 y7.235
†7 5.0000 5.0000* 1.2286 1.51738 0.1148* 5.0000 2.0000 0.1747 0.0679* y5.668

† † †8 2.4729 2.4368 0.90388 0.25738 0.0000 0.2500 1.1127 0.4064 1.0000 y9.389
† †9 0.0008 4.9945 0.0000 0.0131 0.0000 0.2506 0.4292 1.0409 0.0002 y9.842

† †10 0.1557 5.0000* 0.0023 0.9507* 1.0000 5.0000 1.9056 0.0041 0.0519* y10.549
11 1.6226 0.0056 0.0010 0.0000 0.9364 4.2897 1.9745 0.02758 1.0000* y20.167
12 2.3755 0.2457† 0.0012 0.0515 0.0000 0.2533 0.8049 0.1027* 0.9996* y17.351

†13 0.0000 1.8881 0.0276 0.0041 0.1390 3.6635 1.6504 0.0362 0.9998* y15.107
† † † † †14 0.0000 0.0836 0.0026* 0.0017 0.8155 0.2500 1.1202 5.0000 0.1685 y19.759

† †15 2.4961 0.2822* 0.0627* 0.0000 0.0000 0.2500 0.9333 0.8335 0.9184 y9.118
16 0.3372 0.2125 0.0644 0.00518 0.6182 2.3719 2.0000 0.0000 0.04368 y20.501

† †17 0.1779 2.3597 0.0010 0.0098 0.7380* 1.6222 1.9991* 0.37508 0.0000 y6.835
†18 0.91548 0.0194 0.0008 0.0020 0.0160 0.3176 1.15668 4.9996 0.0000 y13.717

19 4.9978* 0.0000 0.0000 0.0123 0.8029* 0.5256 0.8164 0.0000 0.0000 y18.858
† † †20 0.0000 4.8982 0.0754 0.0359 0.0444 0.2501 1.2870 2.2908 0.4383 y0.000

21 4.0110 0.4785 0.0068 0.0140 0.1299 2.4506 1.9996 0.2418 0.00338 y7.461
22 0.0000 0.0770* 0.0000 0.0228* 0.2410 0.2932 1.3692 4.9900* 0.0036* y14.091

†23 0.0000 4.9990* 2.1739 0.0088 1.0000 0.2501 0.4507 0.0575 0.0336* y22.408
24 0.0000 0.0000 0.0593* 0.0001 0.0000 0.7719 0.9035 0.0577 1.0000* y32.326

† †25 0.0096 0.0000 0.0000 0.0014 0.0447 0.2514 1.2981 3.6047* 0.8085* y43.799
† † †26 0.0040* 0.0000 0.00648 0.0000 0.9127 0.6952 1.3744 1.6411 0.9350* y26.881

†27 0.3714 5.0000 0.0000 0.0000 0.5993 2.5876 1.0722 0.0000 1.0000 y24.947
†28 0.6240 0.1001 0.0000 0.0103 0.0000 0.2500 1.18458 2.1288* 0.01538 y31.331

† †29 0.0087 0.0000 0.0012 0.0000 1.0000 0.2500 0.8493 0.6704* 0.9987 y24.132
†30 0.0000 4.9997 0.0000 0.0012 0.2720 0.2500 0.3618 0.4897* 1.0000* y15.816

† † † †31 0.1545 0.0000 0.1242 4.0937 0.0387 5.0000 1.5068 0.0099 1.0000 y15.783
32 0.0118 0.0000 0.0000 0.0037 0.8475 0.2999 1.4574 2.8662 1.0000 y44.614

† †33 0.0001 5.0000 0.0001 0.0078 0.0000 0.2500 0.1498 0.1621 1.0000 y28.952
† † †34 5.0000 1.6528 0.0384 0.1075 1.0000 0.2500 0.9181 0.0000 1.0000 y5.694

35 0.0442 0.0039* 0.0012 0.0000 0.0010 4.9990 1.3331* 0.0095 1.0000* y42.389
36 5.0000 0.6763† 0.1394* 0.0000 0.3720 0.2500 0.6182 0.0107 0.0000 y25.535

† †37 0.0021 0.3760 0.0000 0.0000 0.4976 0.2500 1.0286 2.6208 1.0000 y18.309
† † † †38 0.07218 0.0102 0.0000 0.0000 0.8219 0.2500 1.1850 3.0163 0.7813 y31.967

39 0.0000 0.0025 0.0000 0.0000 1.0000 0.2507 1.3836 4.9836 0.0000 y44.853
† †40 0.0000 0.9091* 0.0204 0.0021 0.1821 1.0786 1.5712 0.9160 0.1106 y21.850

† † †41 0.0000 5.0000 1.71148 0.0000 1.0000 0.2500 0.5904 0.8460 0.2451 y11.346
†42 0.0000 4.9990 0.0000 0.0000 0.0511 2.4469 1.1945* 0.0066 0.2063* y24.424

† †43 0.5839 0.0216* 2.5775 0.0012 0.1535* 0.2502 0.9575 2.3487 0.0000 y4.742
44 0.0000 0.59458 0.0862 0.0825 0.4837 4.1516 2.00008 0.2990 1.00008 y17.525

†45 1.9268* 0.0000 0.01288 0.0172 0.3699* 0.6839 1.8660 4.9990 0.7342 y5.410
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0 1 2 3ID n n n n u s b b t LL0 1

†46 2.7593 0.06348 0.0000 0.0000 0.0642 0.3885 1.9299 4.9989* 0.9068 y22.125
†47 0.0101 0.3426 0.0000 0.0000 0.0952 0.2501 0.9071 0.0000 0.0013 y29.268

48 2.0026* 0.0002 0.1977* 0.0000 0.3901* 4.4643 1.5719 0.00368 0.1303* y32.949
† † †49 0.1562 4.9975 0.0028 0.0097 0.5970 4.6817 1.3992* 0.0791* 0.9004 y16.127

†50 4.9992 5.0000 0.0543 0.0000 0.2650 2.5071 1.1539 0.0000 0.0343 y29.060
† 8 † †51 0.0152 0.0009 0.0043 0.0012* 1.0000 0.2500 0.7468 0.7763 0.0000* y27.068

†52 0.1102* 0.0022 0.0026 0.0027 0.7794* 0.2523 0.9677 1.3121 0.6872 y26.297
† † † †53 0.4485 0.0100* 0.0000 0.0025 1.0000 0.3440 1.9834 4.9999 0.9925 y31.425

†54 0.0000 0.2176 0.0000 0.0000 0.1795 0.2500 0.7955 0.0066 0.0000 y35.825
†55 3.4106* 0.0000 0.0000 0.0069 0.4500* 0.3325 1.3563* 4.9997* 1.0000 y18.367

†56 0.1524* 0.1368 0.0218* 0.0023 0.0310 3.4046 2.0000* 0.0134* 0.0000 y37.722
57 0.7113 1.2696† 0.00278 0.0249* 0.2661† 0.5056 1.7863* 4.8156† 0.0717* y23.277

† †58 0.0006 0.0012 1.2173 5.0000 0.0000 0.2500 0.6789 0.4170 0.00158 y6.561
† † †59 0.0000 0.1217 0.0101* 0.0161* 0.7319 0.2602 1.0671 4.9999 1.0000* y15.697

†60 2.7408 1.5239 0.99008 0.0118 0.9666* 0.2500 0.8777 0.6148 0.0069 y4.061
†61 0.3118 5.0000 0.1443 0.0010 0.0312 0.3302 0.9002 0.0182 0.9952* y23.156

† † †62 0.0000 0.0018 0.0000 0.1046 1.0000 0.6843 0.8165 0.9360 0.0000 y16.074
63 1.7728* 0.0091 0.0000 0.0000 0.0003 0.2999 1.5141 2.5531* 0.0265 y42.258

†64 0.0825 1.4993* 0.0012 0.0000 0.8662 4.9990 1.9990 0.0402 1.0000* y20.602
† † †65 0.2375 0.0314 0.0000 0.0000 1.0000 0.2500 0.7624 0.8180 0.0000 y24.642
† † † † †66 3.8120 4.5427 0.0024 1.1055 0.0000 3.1310 1.7161 0.0204 0.2020* y21.404

† † † †67 0.0000 1.3477 0.0124 0.03488 0.9894 0.3027 1.7306* 3.9892* 0.9994 y21.377
68 0.0000 0.2974* 0.0660* 0.0146 0.0437 3.8471 1.9989 0.0041 0.0000 y31.950
69 4.9990† 0.0000 0.0591* 0.0012 0.5483 0.2501 0.6415 1.1189† 1.0000† y12.059

† † †70 3.6122* 1.8457 0.2781 0.07048 0.9999 0.2501 1.1192 0.34788 0.9399 y2.743
71 0.0097 0.0000 0.0000 0.0000 0.2037* 0.2879 1.77748 4.9893* 0.0000 y43.732

†72 5.0000 0.1570 0.0000 0.0000 0.0000 0.2500 0.8264 0.1013 1.0000 y25.207
† †73 0.0000 0.0182 0.0014 0.0379 0.7706 0.2558 1.6078 4.96968 0.0000 y37.219

† † † † †74 0.1570 0.0000 0.0006 0.0000 0.1901 0.3219 1.6613 3.3650 1.0000 y28.528
† † † † †75 2.5040 4.0819 0.5188 1.6948 0.0000 0.2500 0.5901 0.5625 0.0000 y11.477

† †76 0.0348 0.0375 0.0000 0.0119 1.0000* 0.2500 0.8631 0.6736 0.0339* y23.610
77 1.7452* 0.0937 0.0119 0.0146 1.0000* 0.2500 1.9999 0.0000 0.0000 y19.141
78 0.3290 2.7803* 0.1246 0.0809 0.1616 0.9194 1.1698 0.0010 0.0000 y15.864

†79 0.0000 0.6532 0.0134 0.0000 0.1962 0.8838 0.9413 0.0000 1.0000 y32.711
† †80 0.9836 0.2932 0.0028 0.0000 0.0148 0.2500 1.1703 3.4259 0.0000 y7.412

81 0.0000 0.1251† 0.0012 0.0352† 0.5036† 0.2500 1.2084 3.0037† 0.0000 y17.391
† † †82 0.5162 0.0000 0.0000 0.0158* 0.5516 0.2501 1.3538 4.9990 1.0000 y14.026
† †83 4.9540 0.0813 0.0000 0.0000 0.0967 0.2500 1.1017 4.9999 0.03252 y8.780

† † † †84 3.0285 4.9805 0.01328 0.9418 0.7177 2.7134 1.5120 0.0518* 0.0002 y16.427
†85 0.0000 0.1841 0.0000 0.0000 0.0910 0.7047 0.9061 0.0000 1.0000 y39.521

† †86 0.1443 0.0000 0.0000 0.0000 0.1744 0.2501 1.3706 4.4997 0.9974* y25.421
†87 4.9997 0.0597 0.0021 0.0000 0.0000 0.2500 1.3772 3.0778 1.0000 y17.958

† † †88 0.3047 0.1069 0.0039 0.0000 0.7543 0.2500 0.8871 0.6666 1.0000* y22.962
† †89 0.0000 0.0787 0.0000 0.0415* 0.1431 0.2500 1.1354 3.3992* 0.0000 y28.235
† † † †90 0.5741 1.6877 0.2061 0.21248 1.0000 5.0000 1.7180 0.00278 0.0898* y15.789

† †91 0.3177 1.1829 0.0003 3.7984 0.5434 2.2174 1.2515* 0.0868 0.0008 y22.203

8Significant at 10% level; *significant at 5% level; †significant at 1% level.
b F 1; s was not tested.0
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