
Journal of Economic Behavior & Organization
Vol. 53 (2004) 319–331

Deductive versus inductive equilibrium selection:
experimental results

Ernan Haruvya,∗, Dale O. Stahlb
a School of Management, University of Texas at Dallas, Richardson, TX 75080, USA

b Department of Economics, University of Texas at Austin, Austin, TX 78712, USA

Received 24 June 2002; received in revised form 10 September 2002; accepted 22 October 2002

Abstract

The debate in equilibrium selection appears to have culminated in the formation of two schools of
thought: those who favor equilibrium selection based on rational coordination and those who favor
zero-rationality adaptation. We examine four deductive selection principles and find that each fails
to explain experimental data. We propose an inductive selection principle based on simple learning
dynamics. Using out-of-sample maximum likelihood parameters, the predictive performance of one
such dynamic is shown to be dramatically better than the deductive selection principles. However,
this selection principle is not always definitive, since no dynamic is guaranteed to converge.
© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Equilibrium selection has been in the forefront of game theory in recent years, with
the need for a salient selection method increasing as new economic and social problems
involving multiple equilibria are being modeled. There are two main schools of thought in
the area of equilibrium selection: On the one hand we have deductive selection—selection
based on reasoning and coordination on focal points—and on the other hand we have
inductive selection—selection based on adaptive dynamics. The debate between these two
camps appears to have reached an impasse. Whereas existing deductive selection rules have
been shown to do poorly in experiments (Van Huyck et al., 1990, 1991; Straub, 1995),
inductive selection principles appear more promising.
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Thedeductive equilibrium selection literature attempts to explain and predict which of
the equilibria surviving refinements should be expected in different classes of games. A
common conjecture is that decision-makers apply some deductive principle to identify
a specific Nash equilibrium. One such deductive selection principle ispayoff-dominance
(Harsanyi and Selten, 1988, p. 81;Schelling, 1960, p. 291). Applying this principle, one
expects the equilibrium outcome in a coordination game to be the highest Pareto-ranked
equilibrium. The major limitation of payoff dominance (PD) lies in its failure to take into
consideration off-equilibrium payoffs. To remedy this deficiency, equilibrium selection
principles have been developed that are based on “riskiness,” the most famous of which is
Harsanyi and Selten’s (1988)risk dominance (RD) selection principle.

Schelling was the first to note that the salience of a selection principle used in a particular
game is largely an empirical question. His support of experimental methods came from
his conviction that “some essential part of the study of mixed motive games is empirical.”
Further, “the principles relevant tosuccessful play, thestrategic principles, the proposi-
tions of anormative theory, cannot be derived by purely theoretical means from a priori
considerations” (Schelling, 1960, p. 162).

Experimental results [for prominent examples seeCooper et al. (1990); Van Huyck et al.
(1990, 1991); henceforth, VHBB),Van Huyck et al. (1994, 1997); henceforth, VHCB), and
Straub, 1995] do not appear to favor deductive principles. A possible explanation for the
apparent failure of deductive principles is that they assume decision-makers possess be-
liefs consistent with some equilibrium without attempting to explain the process by which
decision-makers acquire these equilibrium beliefs. Other experimental works [Stahl and
Wilson (1994, 1995); henceforth, SW),Stahl (1996); Haruvy et al. (2001); henceforth,
HSW), andHaruvy (2002)] reject the hypothesis that all experimental subjects generally
begin with equilibrium beliefs. Hence, it would seem that an equilibrium outcome is gener-
ally not the result of choices made by decision-makers with equilibrium beliefs but rather
the result of a dynamic process that begins with first period play by less-than-super-rational
decision-makers.

Until recently, deductive selection principles that do not allow a role for the history of
play or learning have dominated the equilibrium selection literature. The failure of deductive
principles has shifted interest to learning and evolutionary dynamics as possible tools for
equilibrium prediction. The basis for theseinductive selection principles is the idea that
in cases where decision-makers initially fail to coordinate on some equilibrium, repeated
interaction may allow them to learn to coordinate. Having some experience in the game
provides a decision-maker with observations that can be used to reason about the equilibrium
selection problem in the continuation game. This experience may influence the outcome of
the continuation game by focusing expectations on a specific equilibrium point.

Some experimental studies of games with multiple equilibria have found that relatively
simple adaptive learning dynamics often yield good equilibrium predictions. In these exper-
iments, knowledge of the initial distribution of play was sufficient to predict the equilibrium
outcome (see VHBB, VHCB, andRoth and Erev, 1995). However, even with a good char-
acterization of dynamics, one must specify the initial distribution of play before predicting
the final outcome. Recent research (Haruvy and Stahl, 2000) has attempted to fill this gap
by studying alternative theories (a priori specifications) of initial conditions. They find that
specifying uniform initial conditions for “period 0” (i.e. a fictitious period prior to the actual
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first period of play) and using the dynamic model to predict play for period 1 onward is a
robust and parsimonious specification that fits the dynamics quite well.

Stahl (1999)conducted a horse race among seven action-reinforcement learning models
and found that a simple four-parameterlogit best-reply with inertia and adaptive expec-
tations (LBRIAE) dynamic outperformed all others both in sample and out-of-sample by
several measures. We therefore focus on the LBRIAE dynamic model in this paper as a can-
didate for an inductive equilibrium selection principle; if the LBRIAE dynamic converges,
then we call the limit point theLBRIAE equilibrium.

The Harsanyi and Selten tracing procedure has both deductive and inductive features.
Their algorithm adjusts arbitrary prior beliefs into equilibrium beliefs through gradual move-
ment in the direction of best response to the prior beliefs. It is important to recognize, how-
ever, that their underlying dynamic process occurs in the mind of the player before the first
period of play, so it is independent of empirical histories in a given game. Further, unlike
LBRIAE dynamics, dominated strategies have no effect on their predictions—an implication
that has been strongly refuted by experimental data (e.g.Cooper et al., 1990). Nonetheless,
we adopt the spirit of their approach, suggesting simple initial conditions and moving in a
dynamic manner, to arrive at an ex-ante prediction based on game properties alone.

We describe four deductive selection principles inSection 2and our inductive approach
in Section 3. Section 4describes some simple games that test existing notions of deduc-
tive selection against our proposed alternative and the experimental procedure.Section 5
describes the results, andSection 6concludes.

2. Deductive equilibrium selection principles

In this section we briefly review the main deductive selection principles in the literature:
payoff dominance, security (SEC) and risk dominance. The premise behind the deductive
selection principles is that players choose an action from the set of Nash equilibrium actions
according to various criteria. If all players apply the same criterion, the equilibrium outcome
can be predicted without any consideration of dynamics.

2.1. Payoff dominance

The payoff dominance principle relies on the idea that “rational individuals will cooperate
in pursuing their common interests if the conditions permit them to do so” (Harsanyi and
Selten, 1988, p. 356). In the symmetric normal-form games we study, the payoff dominant
equilibrium corresponds to the Nash equilibrium action with the largest diagonal payoff.
Experimental studies byCooper et al. (1990, 1992), VHBB (1990, 1991) andStraub (1995)
on coordination games provide substantial evidence that players often fail to coordinate
their actions to obtain a Pareto-optimal equilibrium in experimental settings.

2.2. Security

A secure action is one that maximizes the minimum possible payoff (Van Huyck et al.,
1990). Thus, when each act is appraised by looking at the worst state for that act, the secure
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action is the action with the best worst state. This idea is the pure-strategy version ofVon
Neumann and Morgenstern’s (1947)maximin criterion. It is important to note that in games
with non-Nash actions, there is no reason to assume that the secure action should be in the
support of some Nash equilibrium. Therefore, to make the security criterion an equilibrium
selection principle, it must be modified to exclude actions that are not in the support of
some equilibrium. We restrict the security criterion to equilibrium actions by defining the
secure equilibrium action as that equilibrium action that satisfies

arg max min
k∈NE j∈NE

Ukj (1)

whereU is aJ×J matrix of game payoffs for the row player in a given game and NE denotes
the set of Nash equilibrium actions. This specification applies the security criterion to the
game after the deletion of non-equilibrium actions. In accordance with this restriction, the
security selection principle is an equilibrium selection principle that predicts the maximin
action after restricting attention to the set of equilibrium actions.

2.3. Risk dominance

The Harsanyi and Seltenrisk dominance selection criterion is concerned with pair-wise
comparisons of Nash equilibria. The equilibrium with the highestNash-product is selected
out of each pair, where the term Nash-product refers to the product of the deviation losses of
both players at a particular equilibrium. Unfortunately, there are difficulties when attempting
to apply this definition to generaln × n games with more than two equilibria because the
pair-wise risk dominance (PRD) relation is not necessarily transitive.

One solution is to redefine risk dominance in accordance with Harsanyi and Selten’s
heuristic justification, in which selection of an equilibrium results from postulating an initial
state of uncertainty where the players have uniformly distributed second order beliefs (i.e.,
each player believes that the other players’ beliefs are uniformly distributed on the relevant
space of priors). Briefly, given a symmetricn × n game with payoff matrixU, let NE
denote the set of Nash equilibrium actions, and let∆NE denote the simplex on NE. For each
j ∈ NE, defineqRD

j as the relative proportion of∆NE for which actionj is the best response

to some belief in∆NE. Then the actionk ∈ NE that maximizesUkq
RD (whereUk is thekth

row of the payoff matrix) is the risk-dominant NE action. This solution coincides with the
pair-wise definition in 2× 2 games and ensures transitivity of the risk dominance relation
in symmetricn × n games. We shall refer to this extension simply asrisk dominance.

To illustrate the difference between the two concepts, consider game 1 inFig. 1. There
are three equilibria in this game. The Nash product for equilibrium A in pair (A, B) is 102

and for equilibrium B in that pair it is 202. Hence B dominates A. The Nash product for
equilibrium A in pair (A, C) is 302 and for equilibrium C in that pair it is 102. Hence A
dominates C. The Nash product for equilibrium B in pair (B, C) is 602 and for equilibrium
C in that pair it is 502. Hence B dominates C. Therefore, B is the pair-wise risk dominance
solution.

For the RD solution, the RD prior isqRD = (0.73, 0.22, 0.05), corresponding to the
relative areas of the best response regions for each equilibrium, and the expected payoffs
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Game 1  (5 ses) Game 4  (5 ses) 

      118         0         6          1      118        2 

A 70 60 90 
L1, SEC, RD, 

LBRIAE 
A 70 30 20      PD 

B 60 80 50 
PRD 

B 60 60 30 
L1, RD, 

LBRIAE 

C 40 20 100 
PD 

C 45 45 40 SEC

Game 13  (7 ses) Game 14  (5 ses) 

       22        11      142          3       88       32 

A 60 60 30 L1 A 50 0 0 DOM

B 30 70 20 PD, RD B 70 35 35 
L1, SEC, 

LBRIAE 

C 70 25 35 
SEC, 

LBRIAE 
C 0 25 55 PD, RD

Game 19  (5 ses) 

       11       108        5 

A 80 60 50 PRD

B 60 70 90 
L1, SEC, RD

LBRIAE 

C 0 0 100 PD

Key: PD = Payoff dominant Nash equilibrium strategy 

RD = Risk dominant Nash equilibrium strategy 

PRD = Pair-wise risk dominant strategy (only indicated when distinct from RD) 

SEC = Security Nash equilibrium strategy 

L1 = Level-1 Strategy 

LBRIAE = large-population limit distribution with no trembles 

Underlined numbers are the aggregate choices. 

Fig. 1. The game matrices, number of sessions and aggregate choices.

are 68.8, 63.9 and 38.6 for A, B, and C, respectively. Therefore, A is the best response to
the RD prior and is the prediction for the RD principle.

In the games we study, the Harsanyi–Selten pair-wise definition of risk dominance yields
a unique solution that we denote aspair-wise risk dominance. Harsanyi and Selten also
introduce a tracing procedure as a risk dominance approach for more general games. In
our games, the Harsanyi–Selten tracing procedure would pick the PRD equilibrium. It
is important to note that the selection principle promoted by Harsanyi and Selten would
in fact select the unique PD equilibrium over any of the risk dominance concepts. We
nonetheless isolate the risk dominance notion as a principle worth investigating for its own
merits.
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3. Inductive selection principles

By inductive selection principles we refer to dynamic models and their limit points. We
begin by addressing several methodological issues concerning the predictions of a dynamic
model. We then present the LBRIAE model as an example and our preferred inductive
principle.

3.1. Inductive processes as selection principles

Though several models of dynamics have been proposed in the literature in the context
of coordination in games with multiple equilibria, few authors have focused on dynamic
models as a solution to the equilibrium selection problem. One exception isVan Huyck
et al. (1997)who studied adaptive behavior in a generic game with multiple Pareto ranked
equilibria. They found that (i) behavior diverged at the separatrix—the border separating
the basins of attraction for each equilibrium—predicted by the fictitious play dynamic,
and (ii) the equilibrium selected was sensitive to small differences in initial conditions.
However, they made no characterization of the appropriate initial conditions. Obviously,
such sensitivity is an impediment to using inductive processes to define selection principles.

Unlike the standard dynamic literature reliance on one-period-ahead measures of likeli-
hood, the focus in the application of dynamics to equilibrium selection is onT-period-ahead
prediction, or the ex-ante prediction prior to the start of the game of the periodT frequency of
choice. To compute the exact theoretical probability distribution for such aT-period-ahead
prediction, we would need to integrate out theT −1 periods prior toT. Although such a feat
may be impossible analytically, it can be approximated to any desired degree of accuracy
by simulating a large number of paths of play.

Given a finite population and a positive probability (ε) of trembles, everyT-period path
has a strictly positive probability. Therefore, our integration procedure will put positive
probability on every stable Nash equilibrium. This indeterminacy is clearly a drawback
to an inductive selection principle. One way to generate more definitive predictions is to
simulate paths of play for a large population (thereby reducing the multinomial variance),
and to reduce the probability of trembles, taking the limit as the population size increases
indefinitely andε goes to zero. The limit dynamics are those of a deterministic first-order
difference equation on the simplex. Starting with initial conditions for the choice frequency
p(0), if the limit dynamics converge, then the limit point is the inductive selection principle’s
prediction.

There are two caveats of this limit approach.First, the limit predictions are not nec-
essarily reliable for finite populations and positive trembles. For small populations with
non-negligible trembles, historical accidents could have a permanent effect on the long-run
outcome by bumping the path out of one basin of convergence into another. Hence, when
attempting predictions for small populations, it would be safer to use simulations for the
actual population size and tremble likelihood.

Second, the predictions may be highly sensitive to the initial conditionsp(0). To see
this, consider a game for whichp(0) is very close to a separatrix. Slightly perturbing the
initial conditions so they lie on the other side of the separatrix will result in dramatically
different final outcomes for the limit dynamics. Thus, unless one is extremely confident
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in the specification of initial conditions, one should be concerned about the robustness of
the limit results to initial conditions. While using simulations for the actual population size
and empirically measured tremble probability will mitigate this problem somewhat, a better
approach would be direct sensitivity analysis: e.g., draw initial priors from a multinomial
distribution as if period 0 were real.

3.2. The LBRIAE inductive selection principle

Stahl (1999)proposed thelogit best-reply with inertia and adaptive expectations model.
The population is assumed to be comprised of two types. One type either sticks with last
period’s choice or imitates the most recent empirical frequency of the whole population,
p(t − 1). Given a fixed propensity to stick or imitate, the resulting behavior of this type is
a first-order dynamic process that has the same structural form as an adaptive expectations
process for beliefs. The second type is assumed (i) to have beliefs given by the adaptive
process of the first type (as if they believe everyone else is of the first type), and (ii) to
choose a noisy (logistic) best-reply to this belief. To accommodate trembles by all types,
the probability choice function is mixed with the uniform distribution over the actions.
Furthermore, unlike the standard assumption of uniform initial conditions for period 1,
LBRIAE imposes the uniformity assumption on a fictitious period 0 and uses the dynamic
model to predict first period behavior.

Defining the LBRIAE prediction as the limit of the large population dynamics as the
tremble probability goes to zero, the prediction is a logit-response equilibrium of the game
(McKelvey and Palfrey, 1995) that will depend on the predetermined values of the LBRIAE
parameters. We hasten to point out that there is no guarantee that the limit dynamics will
converge.

We agree with VHCB that simple “better-response” dynamics should be expected to
predict well for many games with multiple equilibria, and we deem the four-parameter
LBRIAE model to belong to this class. Moreover, it appears that the tremble structure and
the herd behavior of this model result in a much better fit of experimental data than other
leading models (Stahl, 1999). While the final equilibrium outcome for most of our games is
predicted equally well by all leading dynamic models, we will see inSection 5that LBRIAE
outperformsAnderson et al. (2001); Roth and Erev (1995), andCamerer and Ho (1999)
for one of the games. Hence, we focus on the inductive selection principle derived from
the LBRIAE model. We nevertheless briefly describe the other three learning models. The
reader should refer to the original paper for a more detailed description.

3.3. Other learning models

LBRIAE could be classified as a belief learning model since players are modeled as
forming beliefs about the probabilities of opponent choices based on information about
past opponent choices, irrespective of the choice actually played by the individual player
forming the beliefs. A simpler version of belief learning, which we call the logit form of
replicator dynamics, is derived from the idea of stochastic fictitious play with inertia (see
Fudenberg & Levine, 1998; Anderson et al., 2001). The choice rule is stochastic, and beliefs
are updated with depreciation of past beliefs by a constant.
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In contrast to belief learning, Roth and Erev presented what has come to be known as
the reinforcement learning model. In their model, players update propensities based only
on realized payoffs to the strategies actually played. Camerer and Ho’s model is presented
as a hybrid approach between belief and reinforcement learning, where the two schools are
described as differing on the weight given by human players to foregone payoffs in updating
propensities. As noted by Camerer and Ho, belief learning does not distinguish foregone
from realized payoffs in the updating of propensities, whereas players in reinforcement
learning models do not pay any attention to foregone payoffs. The idea behind the EWA
model is that players evaluate the performance of each possible action in the last period
and update their propensities to use each action accordingly. However, the action actually
played by each player receives greater attention in the evaluation process. Hence, actions
are reinforced according to past performance, but actions actually played receive some
additional reinforcement.

4. The games and experimental procedure

We selected five games that discriminate among the deductive equilibrium selection
principles of payoff dominance, risk dominance, pair-wise risk dominance, and security.
For the LBRIAE selection principle and all other learning models, we use parameters
estimated inStahl (1999)for a totally different data set and produce 10,000 simulations for
a large population and vanishing trembles.1 The five games are (using HS99 numbering): 1,
4, 13, 14 and 19, shown inFig. 1. These are symmetric normal-form games, so all players
read the payoff matrix as “row” players. That is, the choices A, B, and C are row choices,
where A is the top row, B is the middle row, and C is the bottom row. The numbers in each
row give the payoff if everyone else chooses A, B or C, respectively. These five games all
have the property that each of the selection principles makes a unique prediction as indicated
in Fig. 1.2 The aggregated choices are displayed as underlined numbers above each payoff
matrix inFig. 1.

A “mean-matching” protocol was used.3 In each period, a participant’s token payoff
was determined by her choice and the percentage distribution of the choices of all other
participants,p(t), as follows. The row of the payoff matrix corresponding to the participant’s
choice was multiplied by the vector of choice distribution of the other participants. Token
payoffs were in probability units for a fixed prize of US$ 2.00 per period of play. In other

1 Since the equal-probable point is not close to any separatrix for these games, the limit predictions are robust
to the initial conditions.

2 While the limit point of the LBRIAE model is a logit equilibrium, since the estimated precision of the logit
best-replies is high enough to put the limit point very close to a pure-strategy Nash equilibrium, for the pur-
pose of comparisons with the deductive selection principles, we identify the LBRIAE prediction as that closest
pure-strategy Nash equilibrium.

3 While pure theory would hold that playing against a single opponent randomly selected from the population is
equivalent to playing against the field, the latter protocol makes asymmetric equilibria highly unlikely.Friedman
(1996)finds very little difference between the two protocols in learning-by-doing experiments; if anything, the
limiting behavior is slightly more Nash-like when playing against the field. Recently, the mean-matching protocol
has been found to promote strategic and individualistic (money-maximizing) behavior (Stahl and Haruvy, 2002a,
2002b).
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words, the token payoff for each period gave the percentage chance of winning US$ 2 for
that period. The lotteries that determined final monetary payoffs were conducted following
the completion of both runs using dice. Specifically, a random number uniformly distributed
on [00.0, 99.9] was generated by the throw of three 10-sided dice. A player won US$ 2.00
if and only if his token payoff exceeded his generated dice number. Payment was made in
cash immediately following each session.

Participants were seated at private computer terminals separated so that no participant
could observe the choices of other participants. The relevant game, or decision matrix,
was presented on the computer screen. Each participant could make a choice by click-
ing the mouse button on any row of the matrix, which then became highlighted. In addi-
tion, each participant could make hypotheses about the choices of the other players. An
on-screen calculator would then calculate and display the hypothetical payoffs to each
available action given each hypothesis. Participants were allowed to make as many hy-
pothetical calculations and choice revisions as time permitted. Following each time pe-
riod, each participant was shown the aggregate choices of all other participants and could
view a record screen with the history of the aggregate choices of other participants for the
entire run.

5. Results

We first examine the aggregate final-period choices and compute the proportion of those
choices (aggregated over all experimental sessions of a game) that are consistent with
equilibrium selection principleP, whereP ∈ {PD, RD, PRD, SEC, LBRIAE}. Because we
have a different number of experimental sessions for the various games, we first average
results for each game over the sessions of that game and finally take the simple average of
these averages (Table 1).

We observe that PD performs worse by this criterion, since only 8.4% of the aggregate
final-period choices are consistent with the PD principle. The LBRIAE selection principle4

clearly performs best by this criterion, since at least 70% of the aggregate final-period
choices are consistent with the LBRIAE principle. While RD and SEC perform well above
the 50% level, there are games for which these principles perform dismally (13 and 4, re-
spectively). To see the robustness of these results across the games, note that the LBRIAE
column weakly dominates the other four columns and that the RD column weakly dom-
inates PR and PRD; thus, these rankings are invariant to any distribution across these
games.

An alternative criterion for evaluating selection principles is by “outcomes” determined
on a session-by-session basis. We say thatthe final outcome is x in sessioni of a game when
at least 75% of the final-period choices arex; herex stands for the action corresponding to

4 It is important to stress again that LBRIAE is used here with predetermined values from another set of games
in another paper (Stahl, 1999), as are all other learning models considered here. As such, LBRIAE and the other
learning models are selection principles in the purest definition of the term, rather than fitted on the data. The latter
approach would put the inductive principles at an unfair advantage over the deductive principles (which cannot be
fitted).
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Table 1
Proportion of final-period choices consistent with equilibrium selection principle

PD RD PRD SEC LBRIAE

Game 1 0.048 0.952 0 0.952 0.952
Game 4 0.008 0.975 0.975 0.017 0.975
Game 13 0.063 0.063 0.063 0.811 0.811
Game 14 0.260 0.260 0.260 0.715 0.715
Game 19 0.040 0.871 0.089 0.871 0.871

Average 0.084 0.624 0.277 0.673 0.865

Table 2
Proportion of final outcomes consistent with equilibrium selection principle

PD RD PRD SEC LBRIAE

Game 1 0 1 0 1 1
Game 4 0 1 1 0 1
Game 13 0 0 0 0.857 0.857
Game 14 0.2 0.2 0.2 0.8 0.8
Game 19 0 1 0 1 1

Average 0.04 0.64 0.24 0.731 0.931

a particular equilibrium selection principle for that game. We then compute the proportion
of the experimental sessions for whichx was the final outcome (Table 2).

Once again we see that PD performs worst (4%) and LBRIAE best (93%). All the selection
principles except LBRIAE completely miss the final outcome for at least one game in our
data, while the lowest performance of LBRIAE is 80%. The performance of SEC and
LBRIAE differ for only game 4, where action C is the unique SEC action, but B is the final
outcome for all sessions run, and B is the RD and LBRIAE solution. RD however predicts
none of the game 13 outcomes and only 20% of game 14 outcomes. Again, the LBRIAE
column weakly dominates the other four columns, and RD weakly dominates PD and PRD,
so these rankings are invariant to the distribution over games.

We see that both performance criteria rank the principles the same. LBRIAE, as a rep-
resentative learning model, is a clear winner over the deductive principles. It missed only
two outcomes: one for game 13, which all selection principles missed because the path did
not converge, and one for game 14 that crossed the separatrix.

While most of the alternative learning models would make the same predictions as
LBRIAE, game 19 presents a discriminating test. All five sessions of game 19 converged to
the B outcome, which is predicted by the LBRIAE model. However, usingStahl’s (1999)
ML parameter estimates, Anderson, Goeree and Holt’s logit form of replicator dynamics5

predicts 70% As, Roth and Erev’s reinforcement learning predicts 52% As, and Camerer
and Ho’s EWA predicts 14% As. Ultimately, however, the purpose of this paper is not to
present a horse race between learning models. The superiority of LBRIAE over competing

5 Anderson et al. (2001)discuss equilibrium selection implications.
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learning models lies mainly in one game out of five, and this could hardly be considered suf-
ficient evidence to rule one learning model better than others. The interested reader should
seeStahl (1999)for a comprehensive horse race between learning models that includes
LBRIAE as one of the candidates.

6. Conclusions

Our results confirm studies like VHBB and Straub in indicating that none of the main-
stream deductive principles give reliable predictions. Though consistent with the spirit of
the tracing procedure of Harsanyi and Selten, LBRIAE does not ignore dominated actions
and may therefore produce very different suggestions from the tracing procedure. However,
we hasten to point out that the LBRIAE process may not converge for some games. On
the other hand, it is not clear that human play will converge in games where the LBRIAE
process does not converge, and since the LBRIAE model fits the empirical dynamics quite
well, the stochastic prediction implicit in the model may be about as good as we can
hope for.6

When predicting final outcomes, we have assumed that there is no previous experience
with a particular game (or saliently similar game) among the experiment participants. There-
fore, the LBRIAE model invokes the principle of insufficient reason to specify a uniform
prior for a fictitious period before the first period of the experiment. Furthermore, if past
experience came from the same informational/institutional environment as the current ex-
periment, then the farther into the past we go, the more reasonable is the assumption of a
uniform prior sometime in the past, and hence the more reasonable is the LBRIAE prediction
using a uniform prior.

On the other hand, finite-population stochastic dynamics can result in substantially dif-
ferent short-run outcomes (e.g. our Game 14). If thesame population were to continue to
play this game, the principle of insufficient reason would no longer apply, but instead it
would be natural to specify the initial conditions as a function of the common experience
(perhaps the historical empirical frequency distribution mixed with the uniform distribu-
tion). If the history-dependent initial conditions were to fall in a different basin of attraction,
then the LBRIAE prediction would differ accordingly. Thus, the LBRIAE model can be
easily adapted to accommodate relevant common experience.

In typical university-based experiments with thoroughly mixed (as opposed to isolated)
subject populations and with abstract games that are not obviously similar to naturally
occurring games for which there is substantial common experience, the LBRIAE model
with a uniform prior (and perhaps some diversity) is likely to predict very well. However,
in cross-cultural studies (e.g.,Roth et al., 1991), in carefully designed experiments with
experienced subjects, and in experiments with “natural” context-rich games, the predictive
performance of the LBRIAE model may be improved by incorporating the relevant common
experience into the specification of initial conditions.

6 The focus here is on simple dynamics. We believe that more sophisticated dynamics, such as the rule learning
model ofStahl (2000), can do better.
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Appendix A. The formal LBRIAE model

Let q(t,θ) denote the expected probability of play in period t based on the history of play
up to and including periodt − 1, and letp(t − 1)denote the actual frequency of play in
periodt − 1. Then, the one-parameter adaptive expectation model specifies that

q(t, q) = θq(t − 1, θ) + (1 − θ)p(t − 1), (2)

where, in accordance with the principle of insufficient reason,q(0, θ) andp(0) are specified
as the uniform distribution over the actions.7

It is assumed that a proportionδ of the population behaves according toEq. (2), which
can be interpreted as “herd” behavior in which with probabilityθ the past action will be
repeated and with probability 1− θ the recent past will be mimicked. The proportion 1− δ

of the population chooses a logit best-reply toEq. (2). That is, lettingb(q, ν) denote the logit
best-reply toq with precisionν, then the probability choice function for period t conditional
of historyht is given by

ϕ(t|ht) = δq(t, θ) + (1 − δ)b(q(t, θ), ν). (3)

To accommodate trembles this probability choice function is mixed with the uniform
distribution over the actions (denotedp0):

ϕ∗(t|ht) = (1 − ε)ϕ(t|ht) + εp0. (4)

Thus, this LBRIAE model has four parameters:ν, δ, θ, andε. TheStahl (1999)maximum-
likelihood parameter estimates are (0.3955, 0.3258, 0.2507, 0.0530), respectively.

Then, the probability of observing empirical frequencyp(t) in periodt in a population
of sizen is a multinomial distribution, call itΦn(p(t)|ht), with ϕ∗(t|ht) as the underlying
probabilities.

To generate aT-period-ahead prediction of the outcome for theTth period, we need to
integrate out theT − 1 periods prior toT:

Φn(p(T)) =
∫

· · ·
∫

Φn(T |p(T − 1), · · · , p(1))

× · · · × Φn(1|p(0)) dp(1) · · · dp(T − 1). (5)

Note that while the domain forϕ∗ is the discrete set of theJ actions in the game, the
domain forΦn is theJ-dimensional simplex.

References

Anderson, S., Goeree, J., Holt, C., 2001. Minimum-effort coordination games: stochastic potential and logit
equilibrium. Games and Economic Behavior 34, 177–199.

Camerer, C., Ho, T., 1999. Experience-weighted attraction learning in normal form games. Econometrica 67,
827–874.

Cooper, R., DeJong, D., Forsythe, R., Ross, T., 1990. Selection criteria in coordination games: some experimental
results. American Economic Review 80, 218–233.

7 If there were some prior history for the game, then there might be a reason for a non-uniform prior.



E. Haruvy, D.O. Stahl / J. of Economic Behavior & Org. 53 (2004) 319–331 331

Cooper, R., DeJong, D., Forsythe, R., Ross, T., 1992. Communication in coordination games. Quarterly Journal
of Economics 107, 739–771.

Friedman, D., 1996. Equilibrium in evolutionary games: some experimental results. The Economic Journal 106,
1–25.

Fudenberg, D., Levine, D., 1998. The Theory of Learning in Games. MIT Press, Cambridge.
Harsanyi, J., Selten, R., 1988. A General Theory of Equilibrium Selection in Games. MIT Press, Cambridge.
Haruvy, E., 2002. Testing modes in beliefs. Journal of Mathematical Psychology 46, 88–109.
Haruvy, E., Stahl, D., 2000. Robust initial conditions for learning dynamics. Working paper, University of Texas

at Austin.
Haruvy, E., Stahl, D., Wilson, P., 2001. Modeling and testing for heterogeneity in observed strategic behavior.

Review of Economics and Statistics 83, 146–157.
McKelvey, R., Palfrey, T., 1995. Quantal response equilibria for normal form games. Games and Economic

Behavior 10, 6–38.
Roth, A., Erev, I., 1995. Learning in extensive-form games: experimental data and simple dynamic models in the

intermediate term. Games and Economic Behavior 8, 164–212.
Roth, A., Prasnikar, V., Okuno-Fujiwara, M., Zamir, S., 1991. Bargaining behavior in Jerusalem, Ljubljana,

Pittsburgh, and Tokyo: an experimental study. American Economic Review 81, 1068–1095.
Schelling, T.C., 1960. The Strategy of Conflict. Harvard University Press, Cambridge.
Stahl, D., 1996. Boundedly rational rule learning in a guessing game. Games and Economic Behavior 16, 303–330.
Stahl D., 1999. A horse race among action-reinforcement learning models. Working paper, University of Texas at

Austin.
Stahl, D., 2000. Rule learning in symmetric normal-form games: theory and evidence. Games and Economic

Behavior 32, 105–138.
Stahl, D., Haruvy, E., 2002a. Level-n bounded rationality on a level playing field of sequential games. Working

paper, University of Texas at Austin.
Stahl, D., Haruvy, E., 2002b. Other-regarding preferences: Egalitarian warm glow, empathy, and group size.

Working paper, University of Texas at Austin.
Stahl, D., Wilson, P., 1994. Experimental evidence of players’ models of other players. Journal of Economic

Behavior and Organization 25, 309–327.
Stahl, D., Wilson, P., 1995. On players’ models of other players: theory and experimental evidence. Games and

Economic Behavior 10, 213–254.
Straub, P.G., 1995. Risk dominance and coordination failures in static games. The Quarterly Review of Economics

and Finance 35, 339–363.
Van Huyck, J., Battalio, R., Beil, R., 1990. Tacit coordination games, strategic uncertainty, and coordination failure.

American Economic Review 80, 234–248.
Van Huyck, J., Battalio, R., Beil, R., 1991. Strategic uncertainty, equilibrium selection principles, and coordination

failures in average opinion games. Quarterly Journal of Economics 106, 885–911.
Van Huyck, J., Cook, J., Battalio, R., 1994. Selection dynamics, asymptotic stability and adaptive behavior. Journal

of Political Economy 102, 975–1005.
Van Huyck, J., Cook, J., Battalio, R., 1997. Adaptive behavior and coordination failure. Journal of Economic

Behavior and Organization 32, 483–503.
Von Neumann, J., Morgenstern, O., 1947. Theory of Games and Economic Behavior. Princeton, New Jersey.


	Deductive versus inductive equilibrium selection: experimental results
	Introduction
	Deductive equilibrium selection principles
	Payoff dominance
	Security
	Risk dominance

	Inductive selection principles
	Inductive processes as selection principles
	The LBRIAE inductive selection principle
	Other learning models

	The games and experimental procedure
	Results
	Conclusions
	The formal LBRIAE model
	References


