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Abstract

Dominated strategies play a crucial role in game theory and its solution concepts. While
empirical studies confirm that humans generally avoid dominated strategies, they also suggest
that humans seldom believe others will avoid such strategies. Hence, the iterated dominance
solution is not likely to be a good predictor of one-shot behavior. We investigate how the
salience of a dominated strategy affects the extent to which players believe that others will
recognize and avoid it. Level-n theory serves as a useful tool in this empirical investigation, as it
is able to classify behavior into levels of bounded rationality and provide clear statistical tests for
model comparisons. We find that even the most obviously dominated strategies do not induce
consistently significant behavioral differences in a variety of one-shot games. Nevertheless, the
fit of the level-n model can be improved by hypothesizing that the level-0 choices and level-1
beliefs are tilted slightly away from the uniform distribution to the extent that the average payoff
of a strategy falls below a threshold.
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1. Introduction.

Dominated strategies have posed problems for game theory. No rational person should

choose a strictly dominated strategy, so if rationality is common knowledge, then no rational

person should choose an iterated strictly dominated strategy (e.g. Tan and Werlang, 1988).

However, in the laboratory, the solution concept of iterated dominance has consistently been a

poor predictor of behavior. Experimental investigations find that subjects generally avoid

dominated strategies, but seldom iteratively eliminate dominated strategies. This has been

shown in dominance solvable beauty contest games (Stahl, 1995; Nagel, 1995), in two-iteration

dominance-solvable symmetric normal-form games (Stahl and Wilson, 1994,1995), in two- and

three- iteration dominance solvable games (Costa-Gomes et al, 2001), and in nine-iteration

dominance solvable games by Sefton and Yavas (1996) and Katok, Sefton, and Yavas (2002).

This paper explores how robust this empirical finding is in symmetric normal form

games. We are motivated by the intuition that some dominated strategies are less obvious than

others. For example, when a pure strategy is dominated only by a mixed strategy, it may be

harder to detect. Similarly, when other strategies are perceived to be risky in the sense that their

maximin payoff level is well below some of the payoffs of the dominated strategy, the dominated

strategy may appear less obvious. In these cases, it is not surprising that humans may have

doubts as to whether all other human players recognize and avoid the dominated strategy. On

the other hand, some dominated strategies can be so obvious that no one should have doubts

about others’ ability to recognize and avoid them. By manipulating the salience of dominated

strategies in an experiment, it may be possible to refine our understanding of when iterated

dominance is a good predictor of behavior and when it is not.

To assess the effect of obviously dominated strategies on behavior in symmetric normal

form games, we choose as a benchmark model the Stahl-Wilson (1995; hereafter SW95) level-n

theory of bounded rationality. The theory and its extensions have been reasonably robust in a

wide class of symmetric normal form games (Stahl-Wilson, 1995; Haruvy and Stahl, 1999;

Haruvy, Stahl, and Wilson, 2001).1 As we show here, the theory is not necessarily robust when

games have "obviously" dominated strategies. To see this, recall that alevel-1type is assumed

1 Robustness of hierachical bounded rationality in various experimental settings has also been shown by Nagel,
1995; Duffy and Nagel, 1997; Sonsino, Erev, and Gilat, 1999; Costa-Gomes, Crawford and Broseta, 2001; Ho,
Camerer, and Wiegelt, 1998; and Gneezy, 2002.
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to believe that the other players are equally likely to choose among the available strategies, and

to choose a logit best-reply to that belief. However, suppose one strategy profile is "obviously

dominated" as in the following symmetric game (payoffs for row player):

A B C
A 0 0 0
B 10 90 10
C 100 5 20

Surely strategy A is obviously so bad that no reasonable player would believe it is as likely to be

chosen as B or C. Nonetheless, the level-1 type believes A is as likely and, therefore, is

predicted to be most likely to choose C. But if A were first eliminated, leaving the 2×2 game

with strategies B and C, then a level-1 type would be predicted to choose B. This reasoning

strongly suggests that the level-n theory of bounded rationality should be modified for games

with obviously dominated strategies. While the SW95 experiments included games with strictly

dominated strategies, none were as obvious as the above example.

This modification of level-n theory is in keeping with game theory practice, where we

routinely ignore hundreds of possible strategies in real-world situations in order to focus on the

most strategically relevant aspects. Though the principle of ignoring obviously dominated

strategies is hardly controversial, the extant literature has failed to identify clear empirical

criteria for when a strategy is so obviously dominated as to warrant deleting it from

consideration before further analysis of the game.

While strategy A in the above game might be obviously dominated even to

unsophisticated players, consider modifying the payoffs of row A to (0, 0, x). Strategy A is still

strictly dominated for all x < 20, but it is obvious for all x < 20? Noting that 10 is the maximin

payoff of the game, perhaps strategy A is obviously dominated when x < 10, but not when x >

10. These are empirical issues that will be addressed in this paper.

Our benchmark data comes from three different experiments involving 47 symmetric 3×3

games, many with dominated strategies. We focus on models of the frequency of choices in the

population of 155 experiment participants, rather than individual choices because the theory of

one-shot complete information games rests fundamentally on beliefs about the population of
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other anonymous players. The experiments and data are described in Section 2. We present a

nested sequence of bounded rational models in Section 3, beginning with a trimodal model of

boundedly rational behavior, and culminating with a quadrimodal eight-parameter model that fits

the data remarkably well.

A fourth experiment was designed to test how well the above fitted model predicts on

games with strictly dominated strategies of varying degrees of salience. We find that even the

most obviously dominated strategies do not induce major deviations from the level-n model of

behavior in one-shot games. That is, though most players appear adept at avoiding dominated

strategies, they still believe that others are likely to choose dominated strategies, even when such

strategies are obviously dominated. Nevertheless, the fit of the level-n model can be improved

by hypothesizing that level-0 choices and level-1 beliefs are tilted slightly away from the

uniform distribution when the average payoff of a strategy falls below a threshold. Further, we

reject the hypothesis that a dominated strategy is obviously dominated to the extent that its

maximum payoff falls short of the maximin payoff of the game.

2. The Experiments and Data.

All of the experiments were conducted in a computer laboratory using a computer

interface that presented the participants the row payoffs of a symmetric game (one game per

screen), and provided a calculator that would compute the hypothetical payoffs to any hypothesis

about the other's choices the participant cared to enter. The payoffs of each game were in terms

of binary lotteries with a range of [0, 100] percent probability of winning a monetary prize. The

first of these experiments is reported in Haruvy, Stahl and Wilson (2001) and entails 15

symmetric 3×3 games and 58 participants. While some of these games had dominated strategies,

none had multiple pure-strategy Nash equilibria - see Appendix A. The second experiment is

reported in Haruvy and Stahl (1999) entails 20 3×3 games and 50 participants. Of these 20

games, 14 were coordination games with multiple pure-strategy Nash equilibria for the purposes

of testing equilibrium selection theories - see Appendix B. The third experiment was designed

for this paper and entailed 15 games and 47 participants; 12 games were selected from the

previous two experiments and 3 new games (numbered 48-50 in Appendic C) had obviously

dominated strategies as the example in the Introduction.
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For each game that appeared in more than one of these experiments, we performed

Pearson Chi-square tests of the hypothesis that they shared a common data generation process.

Since all of these tests passed, our subsequent analysis is based on the pooled data from these

three experiments, with the exception of the three games with supposed obviously dominated

strategies in the third experiment (48, 49, and 50), which are held back for the purpose of testing

out-of-sample predictions. As a benchmark, the entropy of this 47-game data set is -1788.28;

this is the upper bound on the maximum log-likelihood of the data.

A fourth experiment was designed to test a variety of conjectures about what makes a

dominated strategy "obvious" in the sense that no rational person would assume it is as likely to

be chosen as any other strategy. This experiment entailed 15 3×3 games (11 of which had

strictly dominated strategies) and 75 participants - see Appendix D.

3. Population Models of Bounded Rationality.

Let U denote the J×J payoff matrix of the row player, so the transpose U' is the payoff

matrix for the column player, and let Uj denote the jth row of U. For notational convenience, let

p0 denote the uniform probability distribution over the J strategies, and let pNE denote the unique

symmetric Nash equilibrium when there is one, or a uniform probability distribution over the

symmetric pure-strategy Nash equilibria otherwise.

We begin with a unimodal four-parameter probabilistic choice model in which a player

has a three-parameter (µ,ε1,ε2) belief about the other players, given by

qw(µ,ε1,ε2) ≡ ε2p
0 + ε1 br(Up0,µ) + (1-ε1-ε2)p

NE, (1)

wherebr(y,µ) denotes the logit best-reply to expected payoff y with precisionµ. That is,

∑
=

=
J

j
j

k
k

y

y
ybr

1
)exp(

)exp(
),(

µ

µµ (2)

The modal player then chooses a logit best-reply to Uqw with precisionν; i.e. the choice

function isbr(Uqw,ν).
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To allow for diversity in the population of participants, we assume that the actual beliefs

of an individual player come from a normal distribution with mean qw(µ,ε1,ε2) and standard

deviationσ, truncated to the J-dimensional simplex, as in Haruvy, Stahl and Wilson (2001).

Letting ),,,|( 21 σεεµqf denote this distribution, the expected population choice probabilities

are

Pe(ν,µ,ε1,ε2,σ) ≡ ∫ dqqfvUqbr ),,,|(),( 21 σεεµ . (3)

In addition, we add the possibility that the player chooses randomly (a level-0 type), and

that the player is a Maximax type with probabilistic choice functionbr(m,ν) where mj ≡ maxk

Ujk. Lettingα0 denote the proportion of the population that is level-0, andαm denote the

proportion that is Maximax, the combined probabilistic choice function is

P*(ν,µ,ε1,ε2,σ,α0,αm) ≡ α0 p0 + αm br(m,ν) + (1-α0-αm) Pe(ν,µ,ε1,ε2,σ) . (4)

To gauge the specification error, we assume that the actual choice probabilities have a

Dirichlet distribution with mean P*(ν,µ,ε1,ε2,σ,α0 ) and "strength" S.2 Hence, the actual choice

probabilities, p, have a density proportional to

∏ =
J

1j
SP

j

*
j)(p . (5)

The parameter S can be interpreted as a prior sample size; the larger S is, the more concentrated

is the density at the mean P*. We call this the unimodal+ model ("+" for the level-0 and

Maximax types and the Dirichlet parameter S).

We use a combination of simulated annealing and the Nelder-Meade algorithm to

maximize the log-likelihood (LL) function of the 47-game data set described in Section 2. The

maximized LL of the unimodal+ model is -1849.05. The nested hypotheses thatα0 = 0 (no

level-0 types),αm = 0 (no Maximax types), andσ = 0 (no population diversity) are individually

and jointly rejected at all common acceptance levels. Without the level-0 or Maximax type, we

reject the hypothesis that S =∞ (no mis-specification as represented by a Dirichlet distribution);

however, with the level-0 and Maximax types, we cannot reject S =∞.

2 Including S is analogous to computing the sum of squared errors of an ordinary least squares model, and as such
does not reduce the effective degrees of freedom, but merely serves as an inverse measure of mis-specification.
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The mean belief, qw(µ,ε1,ε2), is estimated to have weightε2 = 0.623 on p0, ε1 = 0.318 on

br(Up0,0.09), and 0.059 on pNE. The preponderance of the weight on the uniform belief is most

likely due to the absence of a pure level-1 type in the model. To test this conjecture, we add a

level-1 type whose belief has a normal distribution with mean p0 and standard deviationσ, and

whose choice probabilities are logit best-replies with precisionν. One justification for using the

same standard deviation parameter is that it is standard procedure in kernel density estimation.

We use a single precision parameter to economize on parameters, later test this restriction, and

fail to reject. The maximized LL increases to -1845.26, and this increase has a p-value of

0.0059. Moreover, the mean belief, qw(µ,ε1,ε2), is estimated now to have weightε2 = 0.030 on

p0, ε1 = 0.817 onbr(Up0,0.062), and 0.153 on pNE. As conjectured, the weight on the uniform

belief declines dramatically. Indeed, we cannot reject the hypothesis thatε2 = 0 (no weight on

p0), leaving us with the original SW95 specification of the Worldly type. Further, the MLE of

the standard deviation declines from 0.146 to 0.088, indicating a distinctly bimodal distribution

of beliefs for the population.

One potential shortcoming of the representation of diversity in the model so far is the thin

tails of the normal distribution. A simple way to investigate this possible misspecification is to

introduce a parameter for the tails: specifically, letε0 denote the proportion of rational players'

beliefs that are uniformly distributed over the simplex. In other words, the beliefs are a convex

combination of the uniform distribution over the simplex (with weightε0) and a truncated normal

distribution with type-specific mean and standard deviationσ. With this modification (entailing

one additional parameter), the maximized LL increases to -1838.78, which has a p-value of

0.0003. Moreover, the MLE of the standard deviation declines to 0.016, indicating that the

beliefs can be approximately represented as two atoms (one for level-1 types at p0 and one for

Worldly types) plus a uniform distribution over the simplex withε0 = 0.285. The computational

burden of our model stemming from eq(2) would be considerably reduced if this conjecture were

true. The alternative model is equivalent to havingσ = 0. Unfortunately, this restriction

decreases the LL to -1841.78, which with one degree of freedom has a p-value of 0.035.

Previous studies have revealed some evidence for two additional archetypes: a level-2

type who believes other players are level-1 types, and naïve Nash types who believe pNE to be the

choice frequencies of others. For our pooled data set of 47 games and 155 participants, we found
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no statistically significant contribution from including such types. Apparently, the Worldly type

whose belief puts weight of 0.843 onbr(Up0,0.065) and 0.157 on pNE already captures the belief

that other players might be level-1 types or Nash types (and less naïvely than the pure level-2

and Nash types).

To summarize, we have found that a mixture model with a level-0 type, a Maximax type,

and level-1 and Worldly types with diverse thick-tailed priors emerges as the ML winner. Let us

refer to this model as theBoundedly Rational Population(BRP) model. Table I presents the

parameter estimates, variance-covariance matrix of these estimates, and the t-ratios.

How well does the BRP model fit the data? We consider three measures of goodness-of-

fit: (1) the pseudo-R2 (entropy/LL), (2) the Pearson Chi-square statistic (PCS), and (3) the root

mean squared error (RMSE). The pseudo-R2 is an impressive 0.973. The aggregated PCS is

91.90, which with 94 degrees of freedom has a p-value of 0.541. Further, only one game out of

47 fails the individual PCS test at the 5% level, and none fail at the 2.5% level. The RMSE is a

modest 0.052. Therefore, we cannot reject the hypothesis that the fitted BRP model is the data

generating process.

4. Confronting Obviously Dominated Strategies.

A fourth experiment was designed to test a variety of conjectures about what makes a

dominated strategy "obvious" and what effect this salience has on the beliefs and behavior of

boundedly rational players. Specifically, we are looking for evidence that some dominated

strategies are so obvious that boundedly rational players’ beliefs have lower probabilities that

others will play these strategies, relative to undominated strategies. This experiment entailed 15

3×3 games (11 of which had strictly dominated strategies of various degrees of obviousness) and

75 participants - see Appendix D.

The design criterion was to have diversity across two dimensions: (1) the maximum

payoff a dominated strategy offers, and (2) the maximin level of the game. The notion was that a

strategy is obviously dominated to the extent that its maximum payoff is less than the maximin

payoff of the game. We ran three sessions of 25 participants each at UT-Austin. The third

session reversed the order of the 15 games. In addition to this experimental data, we also include
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the three games held back from the third experiment described in Section 2 (games 48, 49 and 50

of Appendix C). Chi-square tests fail to reject the hypothesis that the aggregate session behavior

comes from the same data generating process. We therefore pool the data for further analysis.

As a benchmark, the entropy of this data is -868.82.

A cursory look at the data provides no support for the above notion that a strategy is

obviously dominated to the extent that its maximum payoff is less than the maximin payoff of

the game. The eight games for which the maximum payoff of the dominated strategy is less than

the maximin payoff (48, 49, 50, 52, 56, 60, 62, and 64) do not manifest dramatically different

behavior: the original level-1 prediction still accounts for 292 out of 516 choices (56.6%), and it

is the modal choice in six of the eight games. For the other six games with strictly dominated

strategies (51,5 4, 57,58 , 59, and 65), the level-1 prediction accounts for 233 out of 450 choices

(51.8%), and it is the modal choice in three of the six games.

To gauge the robustness of our BRP model to dominated strategies, we use the estimated

BRP parameters to predict choice frequencies for the 18 games of this data set and compute three

goodness-of-fit measures. The LL of the data is -912.55, giving a pseudo-R2 of 0.952. The

game-averaged RMSE is a disappointing 0.084. The aggregated PCS statistic for all 18 games is

82.74, with a p-value of 0.000015, clearly rejecting the hypothesis that this BRP model generated

the data. On the other hand, only five of the 18 games fail the individual PCS test (48, 50, 51,

59, and 60). Game 51 in appendix D has only 35% choosing the level-1 action (A); deleting the

dominated strategy (C), the level-1 choice would be action B. Thus, it appears that C was

"obvious enough" for level-1 types to believe others will avoid it.

However, the same logic does not appear to extend to game 52. Though strategy A

appears obviously dominated to us, the BRP model predicts the choices almost perfectly (PCS =

0.508, and RMSE = 0.010). As another troubling example, take game 56, in which A appears

obviously dominated by B and yet the BRP model predicts the choices quite well (PCS = 0.885,

and RMSE = 0.029). Fitting this data with a parsimonious model will not be an easy task.

4.1. Hypotheses of a Level-0 Tilt.

A natural and parsimonious modification of the BRP model is the hypothesis that level-0

types are less likely to choose a dominated strategy than an undominated strategy, but remain
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equally likely to choose any undominated strategy. Let q0 denote such a "tilt" away from the

uniform distribution (p0). We define the logit best-reply function with precisionµ and tilt q0 as:

∑
=

=
J

j
jj

kk
k

yq

yq
qyBR

1

0

0
0

)exp(

)exp(
),,(

µ

µ
µ (6)

Note that as the precisionµ goes to 0,BRk(y,µ,q0) goes to q0 instead of p0. We then assume that

level-0 and level-1 choice frequencies are q0 andbrk(Uq0,ν) respectively, and that the belief of a

Worldly type is

qw(µ,ε1,q
0) ≡ ε1 BR(Uq0,µ,q0) + (1-ε1)p

NE. (7)

A crude but simple hypothesis about q0 is that it is a slight deviation from the uniform p0

in the direction away from the strictly dominated strategy. In our case with three strategies for

each game, suppose q0 has probabilityη ∈ [0, 1/3] on the strictly dominated strategy, and

probability (1-η)/2 ∈ [1/3, 1/2] on each of the other two strategies. We will refer to this as the

linear-tilt model.

Fixing the eight parameters of the BRP model at the MLE values from Section 3,3 and

maximizing the log-likelihood of the new data set with respect to the one new parameterη, we

find η = 0.298. This q0 means that about 10.6% of the level-0 types are believed to avoid

strictly dominated strategies. Despite this small tilt, the LL increases to -898.61; this 13.94

increase in LL has a p-value of 1.3×10-7. Further, the RMSE declines to 0.061, the aggregated

PCS declines to 53.06 (p-value of 0.033), and only 3 of the 18 games fail the individual PCS test

(48, 60, and 62). While the increase in LL is very statistically significant, the PCS test indicates

that the modified model is not the data generating process. These mixed results beg two

questions. Why does such a small tilt in q0 make such a large improvement, and why does the

aggregate PCS test still fail (albeit not at the 2.5% level)?

One potential shortcoming of the linear-tilt model is its invariance to how dominated a

strategy is. The motivating notion of the experiment design - that the comparison of the

3 Since we are exploring "minimal" departures from the BRP model, we do not want to compound the effects of the
uniform level-0 tilt with interactive effects with other parameters. Later in section 4.3, we will address the
robustness of all the parameter estimates.
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maximum payoff of a strategy with the maximin payoff of the game - suggests a measure of how

bad a strategy is. Let zj ≡ min{0, mj - M}, where mj is the maximum payoff of strategy j and M

is the maximin payoff of the game, and suppose q0 = br(z,γ). All strategies whose maximum

payoff is at least as great as the maximin payoff will be equally likely, while any strategy whose

maximum payoff is less than M will have a probability less than 1/J. The parameterγ gauges

how sensitive level-0 choice probabilities are to such shortfalls. Fixing the eight parameters of

the BRP model at the MLE values from Section 3, and maximizing the log-likelihood of the new

data set with respect to the one new parameter, we findγ = 0.020, LL = -908.67, PCS = 75.12,

and RMSE = 0.076. Since all the goodness-of-fit measures are substantially worse than the

simple linear-tilt model, we reject our conjecture that a dominated strategy is obvious to the

extent that its maximum payoff is less than the maximin payoff of the game.

Rather than using the maximin payoff as the reference, we considered using a fixed

reference level, Z, to be estimated. A single game-invariant reference level makes sense for our

data since the range of payoffs for all games was [0,100]. Haruvy and Stahl (1999) demonstrated

that one-parameter logit choice functions fit the data better after rescaling all payoffs to have the

same range. Hence, the estimated value of Z should be interpreted in terms of the [0,100] range.

Continuing, we let zj ≡ min{0, mj - Z}, and again suppose q0 = br(z,γ). Maximizing the log-

likelihood of the new data set with respect to the two new parameters, we findγ = 0.0054, Z =

50, LL = -902.00, PCS = 61.01, and RMSE = 0.066. These goodness-of-fit measures are not as

good as for the linear-tilt model, despite having an additional parameter. Moreover, now five

games (48, 51, 52, 60, and 62) fail the individual PCS tests. Therefore, we reject this alternative

in favor of the linear-tilt model.

Finally, instead of the maximum payoff (mj) of a strategy, we considered the average

payoff of strategy j (aj ≡ Ujp
0), letting zj ≡ min{0, aj - Z}and q0 = br(z,γ). We call this thelogit-

average-payoff(LAP)-tilt model. Maximizing the log-likelihood of the new data set with respect

to the two new parameters, we findγ = 0.0080, Z = 38.3, LL = -899.66, PCS = 56.85, and

RMSE = 0.062. These goodness-of-fit measures are almost but not quite as good as for the

linear-tilt model, despite having an additional parameter. Games 48, 59, 60, and 62 still fail the

individual PCS tests.
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From the point of view of a theory of bounded rationality, one disadvantage the linear-tilt

model has over the LAP-tilt alternative is that the participant must identify all the dominated

strategies before computing q0, even in cases like game 59 in which it takes a mixture of A and B

to strictly dominate C. While it may be reasonable to assume that level-1 and Worldly types can

do this, it does not seem reasonable that level-0 types can. Rather, it is more plausible that level-

0 types shy away from a dominated strategy simply because of itsunattractivepayoffs (aj).

Human cognitive processes may be better at eliminating bad choices than at finding optimal

choices (e.g. Cosmides and Tooby, 1992; and Gigerenzer, et. al., 1999).

4.2 Predictions of Level-0 Tilts.

The BRP model predictions failed the individual PCS tests for games 48, 50, 51, 59, and

60, while the linear-tilt model predictions failed for games (48, 60, and 62). Thus, the level-0 tilt

helped in games 50, 51, and 59, and hurt in game 62.

To investigate these ambiguous results further, we present here the predicted choice

frequencies of both models for games 51 and 62. In the first column, p1, pm, and pw denote the

predicted choice frequencies for level-1, Maximax, and Worldly types respectively; qw denotes

the belief of the Worldly type, p* denotes the predicted population mixture, and freq gives the

actual choice frequencies. The last row (labeled GOF) gives LL less entropy, PCS, and RMSE

in that order.

Game 51

BRP Model: Linear-tilt Model

A B C A B C

q0 0.333 0.333 0.333 0.351 0.351 0.298

p1 0.787 0.213 0.000 0.644 0.356 0.000

pm 1.000 0.000 0.000 1.000 0.000 0.000

qw 0.480 0.469 0.050 0.433 0.519 0.048

pw 0.160 0.840 0.000 0.160 0.840 0.000

p* 0.503 0.470 0.026 0.440 0.536 0.024

freq: 0.347 0.653 0.000 0.347 0.653 0.000

GOF: -6.17 10.97 0.140 -3.38 5.20 0.088
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Game 62

BRP Model: Linear-tilt Model

A B C A B C

q0 0.333 0.333 0.333 0.351 0.298 0.351

p1 0.897 0.000 0.103 0.871 0.000 0.129

pm 0.950 0.000 0.050 0.950 0.000 0.050

qw 0.661 0.040 0.300 0.616 0.037 0.347

pw 0.409 0.001 0.590 0.269 0.000 0.730

p* 0.653 0.027 0.320 0.585 0.024 0.391

freq: 0.720 0.000 0.280 0.720 0.000 0.280

GOF: -2.41 2.90 0.048 -4.04 6.47 0.102

For game 51, we can see that the tilt of q0 away from the dominated strategy C causes a shift in

the level-1 prediction away from A towards B, thereby improving all three goodness-of-fit

measures. This tilt has no effect on the Worldly prediction because the effect of q0 in

BRk(y,µ,q0) offsets the effect of q0 on the belief qw(µ,ε1,q
0). For game 62, the tilt away from the

dominated strategy B causes a shift in both the level-1 and Worldly prediction away from A

towards C, thereby deteriorating all three goodness-of-fit measures.

4.3. Confronting all Four Data Sets.

So far in this section we have fixed the parameter values of the BRP model at the MLE

values for the first three data sets, and used the fourth data set to estimate the level-0 tilt. Since

there are games in the first three data sets with strictly dominated strategies, the modified model

will have an effect there as well. Therefore, we need to investigate this effect. Moreover, the

effect may differ for the linear-tilt model and the LAP-tilt model and enable us to select one

model over the other.

First, we fix the parameters at the values used in Section 4.2, and compute the three

goodness-of-fit measures for the first three data sets and compare this to that obtained without

the level-0 tilt. For the linear-tilt model, we find that all three measures deteriorate: LL

decreases by 6.91, PCS increases by 11.68, and RMSE increases by 0.008. For the LAP-tilt,

however, we find that all three measures remain essentially the same: LL increases by 0.32, PCS
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decreases by 0.23, and RMSE is unchanged. This finding is a good reason to prefer the LAP-tilt

model over the linear-tilt model.

Second, we estimate all ten parameters of the LAP-tilt model on the four data sets pooled,

and find that the LL increases by only 5.385, which (with 10 degrees of freedom) is insignificant

at all common acceptance levels. In other words, the parameters of the LAP-tilt model are robust

across data sets.

5. Conclusions.

We began this investigation with the intuition that we could find an empirical criteria to

determine when a strategy is so obviously dominated that no reasonable human player would

believe that others are as likely to choose it as an undominated strategy. One hypothesis was that

a strategy is obviously dominated to the extent that its maximum possible payoff is less than the

maximin level of the game. Our conjecture was not only that players would avoid an obviously

dominated strategy but that minimally sophisticated players would be able to assign a negligible

probability to that strategy being played by others. The data from our experiment reject this

hypothesis.

On the other hand, we did find that the fit of the level-n boundedly rational population

(BRP) model could be improved by hypothesizing a tilt in the level-0 behavior. Two candidates

producing statistically significant improvements on the test set of data were the linear-tilt model

and the LAP-tilt model. Comparing how these models predicted on the benchmark data sets, we

concluded that the LAP-tilt model is better. In other words, a level-0 player is exponentially less

likely to choose a strategy to the extent that its average payoff falls below a threshold that is

about 40% of the range of payoffs in the game.

The above finding is critical in any setting where hierarchical bounded rationality is

present. Though level-n thinking survives the most obviously dominated strategies we could

devise, a tilt in the choices of level-0 players away from obviously dominated actions, as well as

a corresponding tilt in the beliefs of the more sophisticated level-1 and worldly players shows

that dominated strategies can be made obvious in some sense. However, the surprisingly small

impact obviously dominated strategies had on subjects’ behavior suggests that level-n thinking is
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very deeply rooted in subjects’ belief formation and approach to strategic games to the point that

it can represent a real bias in behavior and generate ‘obviously unreasonable’ beliefs.

Although we have found that our human subjects in one-shot games seldom believe

others will recognize and avoid even obviously dominated strategies, it does not follow that

dominated strategies will survive over time. Since humans do succeed in avoiding dominated

strategies, when that empirical evidence is available to the players, any learning dynamic for

which the beliefs are responsive to the history will eventually drive out iterated strictly

dominated strategies. Nonetheless, the presence of dominated strategies at the start of the

dynamic process can substantively alter the path of play, thereby affecting long-run behavior.
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Table I. Parameter Estimates and Statistics of BRP Model

Var-Cov Matrix ( x 10-4)

MLE T-Ratio σ ε0 ν µ ε1 α0 α1 αm αw

σ 0.0157 2.816 0.3100

ε0 0.285 5.183 0.1600 30.2000

ν 0.295 8.744 -0.4490 8.1100 11.4000

µ 0.645 18.733 -0.0287 -0.1690 -0.1100 0.1190

ε1 0.843 34.844 0.2130 -0.0666 -0.5890 -0.0971 5.8500

α0 0.079 4.822 -0.1660 -0.4900 2.6600 -0.0568 0.1430 2.6800

α1 0.451 14.135 -0.1860 -5.0700 -3.1800 0.5330 0.2340 -0.1480 10.2000

αm 0.0552 4.128 0.0868 -2.1100 -1.4400 -0.0296 -0.4140 -0.8130 -1.1700 1.7900

αw 0.415 12.857 0.2650 7.6700 1.9600 -0.4470 0.0371 -1.7200 -8.8800 0.1940 10.4000
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Appendix A. The games (and choices) of Haruvy, Stahl, and Wilson (2001)

A B C A B C A B C

1) 25 33 0 2) 15 31 12 3) 15 28 15
A 25 30 100 A 75 40 45 A 10 100 0
B 40 45 65 B 70 15 100 B 5 60 70
C 31 0 40 C 70 60 0 C 80 30 10

4) 29 10 19 5) 45 10 3 6) 28 4 25
A 70 90 38 A 30 50 100 A 10 100 40
B 100 0 40 B 40 45 10 B 0 70 50
C 88 48 43 C 35 60 0 C 20 50 60

7) 31 8 19 8) 27 9 22 9) 3 14 41
A 25 30 100 A 80 60 0 A 75 0 45
B 60 31 51 B 40 10 50 B 80 35 45
C 95 30 0 C 100 5 20 C 100 35 41

10) 32 12 14 11) 15 35 8 12) 35 3 20
A 30 100 50 A 0 100 50 A 40 100 65
B 40 0 90 B 90 63 50 B 33 25 65
C 50 75 29 C 46 82 52 C 80 0 65

13) 13 10 35 14) 33 2 23 15) 17 2 39
A 45 50 21 A 30 100 22 A 40 15 70
B 41 0 40 B 35 0 45 B 22 80 0
C 40 100 0 C 51 50 20 C 30 100 55
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Appendix B. Haruvy and Stahl (1999)

A B C A B C A B C

16) 38 4 8 17) 0 4 46 18) 21 27 2
A 60 50 90 A 60 0 0 A 25 30 100
B 50 75 40 B 0 55 25 B 40 45 65
C 25 0 100 C 100 35 35 C 31 0 40

19) 9 39 2 20) 44 2 4 21) 12 2 36
A 100 20 0 A 50 100 50 A 40 15 70
B 80 80 20 B 0 85 0 B 22 80 0
C 50 50 40 C 35 0 80 C 30 100 55

22) 42 0 8 23) 1 48 1 24) 39 6 5
A 80 20 80 A 35 35 70 A 30 50 100
B 60 10 70 B 25 55 100 B 40 45 10
C 20 0 100 C 0 0 60 C 35 60 0

25) 1 2 47 26) 33 17 0 27) 31 5 14
A 0 55 85 A 80 35 90 A 30 50 100
B 30 70 30 B 50 50 100 B 35 0 45
C 15 55 100 C 0 0 85 C 51 50 20

28) 35 4 11 29) 1 46 3 30) 17 22 11
A 80 80 20 A 70 0 0 A 75 40 45
B 20 100 0 B 100 50 50 B 70 15 100
C 100 10 30 C 0 35 80 C 70 60 0

31) 36 9 5 32) 2 5 43 33) 19 8 23
A 35 0 100 A 50 0 0 A 25 30 100
B 0 100 0 B 0 55 25 B 60 31 51
C 15 40 40 C 100 35 35 C 95 30 0

34) 10 34 6 35) 0 6 44
A 80 60 50 A 55 0 25
B 60 70 90 B 50 50 30
C 0 0 100 C 35 100 35
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Appendix C. Third Experiment for this paper.

A B C A B C A B C

36) 16 30 1 37) 6 38 3 38) 36 7 4
A 25 30 100 A 100 20 0 A 30 50 100
B 40 45 65 B 80 80 20 B 40 45 10
C 31 0 40 C 50 50 40 C 35 60 0

39) 30 4 13 40) 1 42 4 41) 16 22 9
A 80 80 20 A 71 0 0 A 75 40 45
B 20 100 0 B 100 50 50 B 70 15 100
C 100 10 30 C 0 35 80 C 70 60 0

42) 39 5 3 43) 0 6 41 44) 11 33 3
A 33 0 100 A 50 0 0 A 80 60 50
B 1 100 1 B 0 55 25 B 60 70 90
C 15 40 40 C 100 35 35 C 0 0 100

45) 32 4 11 46) 7 31 9 47) 4 9 34
A 70 90 38 A 0 100 50 A 75 0 45
B 100 0 40 B 90 63 50 B 80 35 45
C 88 48 43 C 46 82 52 C 100 35 41

48) 36 11 0 49) 0 29 18 50) 13 0 34
A 75 10 100 A 1 0 0 A 10 100 10
B 5 90 5 B 10 90 10 B 0 0 0
C 0 1 1 C 100 5 20 C 5 5 90
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Appendix D: Fourth Experiment for this paper.

A B C A B C A B C

51) 26 49 0 52) 1 36 38 53) 64 8 3
A 0 35 100 A 1 0 0 A 30 50 100
B 55 40 20 B 100 10 5 B 40 45 10
C 30 0 0 C 5 5 90 C 35 60 0

54) 62 12 1 55) 53 4 18 56) 1 41 33
A 55 10 100 A 80 80 20 A 10 5 5
B 5 90 5 B 20 100 0 B 100 30 35
C 15 0 0 C 100 10 30 C 0 80 30

57) 36 1 38 58) 0 42 33 59) 44 27 4
A 80 10 5 A 15 0 0 A 35 0 100
B 25 0 10 B 0 90 10 B 1 100 1
C 5 100 20 C 100 0 20 C 10 40 40

60) 0 12 63 22 61) 17 52 6 62) 54 0 21
A 0 0 38 A 80 60 50 A 20 100 20
B 55 25 40 B 60 70 90 B 5 5 5
C 35 35 43 C 0 0 100 C 0 5 90

63) 39 14 22 64) 1 43 31 65) 30 44 1
A 70 90 38 A 10 10 10 A 20 0 100
B 100 0 40 B 15 80 15 B 10 90 0
C 88 48 43 C 100 0 30 C 0 0 5


