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Abstract

Although acompletedynamic model includes the equations of motion as well as the initial conditions,

many of the learning dynamics in the literature do not entail a serious theory of initial conditions. This

paper explores and evaluates five approaches to complete learning models with a theory of initial

conditions. We find that (1) the initial period’s fit is sensitive to the model of initial conditions chosen,

with some initial condition models consistently superior to others over games. (2) Looking at periods 2

onward, leading dynamic models are robust to initial condition models according to one-period-ahead

goodness-of-fit criteria. (3) Longer horizon measures of fit provide the insight that models of initials

conditions with initially high diversity sometimes outperform better specified models of initial conditions

.
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1. INTRODUCTION

The common element to theories of adaptive dynamics is that given initial

conditions, the population will move in the direction of the (possibly noisy) best response.

With the exception of this common element, different theories vary along numerous

dimensions, such as attention to foregone payoffs, appropriate discounting of beliefs or

propensities, mapping between beliefs or propensities and choice, level of sophistication,

foresight, transference between games, heterogeneity, and various other aspects. Several

works have attempted to conduct model comparisons (Camerer, 1999; Feltovich, 2000;

Stahl, 1999; Erev and Haruvy, 2000) and highlight some of the differences between

models. Attention in these comparisons has focused on various differences between

models, but one aspect which has been all but ignored in learning models is the treatment

of initial conditions. Some leading works on dynamics circumvent initial conditions by

plugging in the actual empirical frequency in the first period (e.g., Camerer and Ho, 2000;

Van Huyck, Cook, and Battalio, 1997). At the other extreme, one could apply the

principle of insufficient reason to justify the uniform distribution as the default initial

condition for the first period. While this approach will yield poor predictions for the first

period, it could yield robust T-period ahead predictions (as claimed by Roth and Erev,

1998).

In parallel, works on one-shot games (Stahl and Wilson, 1994, 1995, Haruvy and

Stahl, 1999, and Costa-Gomes et al., 1998), while rigorously characterizing the choice

distribution, merely allude to their extension into dynamic predictions. Haruvy and Stahl

(1999; hereafter HS99) tested a large class of models of initial play, including the major

equilibrium selection principles. They concluded that the best predictor of initial play was

given by a heterogeneous model with boundedly rational players. Using the parameters

estimated by HS99, forecasts of first-period play may be generated for any symmetric

normal-form game and used as the initial conditions for dynamics. We find that indeed the

HS99 predictions for the (out-of-sample) data considered herein are quite accurate and the

best predictions among the alternatives considered. Unfortunately, the HS99 model is

parameter-intensive and hence cumbersome to re-estimate on new data sets. In HS99, the

best homogeneous, one-parameter model of initial play was the simple logistic "level-1"
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model. Because of its simplicity and reliability, we also consider this level-1 model herein.

In addition, we investigate an approach proposed by Stahl (1999) that adds a fictitious

period 0 in which players play uniformly. We name this approach “uniform period 0.” To

distinguish this from uniform initials in period 1 (such as those in Erev-Roth, 1995; Roth-

Erev, 1998), we call the latter approach "uniform period 1."

Our study entails two conceptual dimensions: (1) initial conditions, and (2)

dynamic models. We note that different initial condition models are ranked differently

depending on both the dynamic and the measure used. We discuss and seek explanations

for such discrepancies.

2. FIVE M ODELS OF INITIAL CONDITIONS

Five approaches to dealing with initial conditions arise from extant works: (1)

plugging in actual initials (subsection 2.1), (2) uniform period 1 initials (subsection 2.2),

(3) mixtures of heterogeneous types (subsection 2.3), (4) level-1 (subsection 2.4), and (5)

uniform period 0 (subsection 2.5). We briefly describe each.

2.1. Actual Empirical Frequency as Initial Condition.

In the absence of a theory of initial conditions, empiricists who use an incomplete

dynamic model often take the first period of play as the default initial condition and restrict

the dynamic model to subsequent periods. This is a bad approach for several reasons.

First, the model remains incomplete, so empirical results cannot be used to predict

complete dynamic paths including the first period. Second, in finite populations, the

observed empirical frequency of play in the first period is the realization of a random

variable, and hence does not reveal the relevant latent state variable. To assume that it

does introduces possibly significant errors into the subsequent empirical analysis. Third,

since the truth is at best only approximated by the dynamic model, increased accuracy of

first period play will not necessarily yield the best T-period ahead predictions. Fourth, this

approach is not applicable when an ex-ante prediction is needed for a new game.
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2.2. Uniform Period 1 Initial Condition.

Common in reinforcement learning theories (Erev and Roth, 1998, Sarin and

Vahid, 1999) is to assume that since players have no past experience and no deductive

reasoning abilities, initial conditions can be ex ante predicted reasonably well bythe

principle of insuffucent reason: that is, all pure strategies are equally likely.

Erev and Roth (1998)1 model initial propensities as a fixed point assigning equal

propensity to each available action. Empirical evidence in their experiments appears

favorable to that assumption. Equal propensities are similarly used by Capra et al (1999).

Whereas uniform initial propensities are not likely to be empirically accurate in

many settings, this model has the advantage that it results in high initial variance, whereas

more accurate models may result in insufficient diversity.

2.3. Mixtures of Heterogeneous Types.

A middle ground between the zero rationality of section 2.1 and the infinite

rationality of deductive theories is a mixture model of heterogeneous types introduced by

Stahl and Wilson (1994, 1995) and extended by HS99. This model includes random

behavior, as well as boundedly rational based on conjectures by Stahl (1993) and Nagel

(1995) that different behaviors were due to different levels of reasoning by a self-

referential process starting with a uniform prior over other players’ strategies. Hence a

level-1 players would best-respond to a uniform prior, a level-2 player would best respond

to a population of level-1 players, and so on.

Stahl and Wilson (1994, 1995) demonstrated robustness of level-n parameters over

games, whereas Nagel et al (1999) show some fascinating regularities in level-n behavior

over a diverse range of populations in diverse settings. The six types of behavior

considered here for characterization of the initial distribution of choice are (1) random

behavior, also known as level-0, (2) level-1 bounded rationality, (3) level-2 bounded

rationality, (4) uniform Nash behavior2, (5) maximax behavior3, and (6) worldly behavior.

1 Motivated by the same consideration, Roth and Erev (1995) present simulations with initial propensities
chosen randomly from a uniform distribution over each player’s pure strategies.
2 By uniform Nash behavior we mean that each pure Nash equilibrium is equally likely. This is in
accordance with HS99, which found no evidence for deductive selection in initial period play.
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The last type of behavior mentioned, the worldly behavior, can be thought of as

considering a convex combination of evidences, each of which underlies one of our

previously defined behavioral types.

Each type of behavior was assigned a precision parameter,νt, which can be

thought of as a parameter which determines how sensitive players of type t are to expected

payoff differences between available actions. Through a likelihood function of a logit

specification, both the precision parameters and the proportion of each type of behavior in

the population,αt, were determined. The parameters used for predictions of initial-period

play in this paper (see Table 1) are based on out-of-sample estimation of 20 different one-

shot games in HS99.

Given the 12 estimated parameters in Table 1, this model of initial play defines a

probability distribution over the pure strategies, which is the derived estimate of the

probability distribution from which the empirical sample was drawn. Hence, this estimated

probability distribution can be used to forecast initial play out-of-sample.

2.4. Level-1 Initial Conditions.

Due to the large number of parameters (12), the model of HS99 may be too

cumbersome to use. Alternatively, one could use the homogeneous level-1 model

considered in HS99, since level-1 behavior was the predominant mode in the

heterogeneous HS99 model. Recall from the previous section that the level-1 player

noisily best responds to the prior that the population is composed of equal numbers of

players choosing each available action. Stahl (1999) compared different population

models of dynamics starting from level-1 initial conditions. Sonsino, Erev, and Gilat

(1999) similarly applied level-1 initial conditions to a model of reinforcement learning that

had player reinforcing rules.

2.5. Uniform Period 0.

3 A maximax type is one who tends to choose the action that can potentially give him the highest payoff in
the game (Haruvy, Stahl, and Wilson, 1999).
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Stahl (1999) suggested imagining a "prior period 0" to which the principle of

insufficient reason implies a uniform distribution, and then invoking the dynamic model for

period 1 onward. This approach was demonstrably better than assuming a uniform

distribution in period 1. The first period predictions are quite similar to those of the level-

1 model, and have the advantage of requiring no additional parameters to complete the

dynamic model. Therefore, we will examine this approach herein.

3. THE EXPERIMENT

3.1. The Game Environment

Consider a finite, symmetric, two-player game G≡ (N,A,U) in normal form, where

N ≡ {1,2} is the set of players, A≡ {1, ... , J} is the set of actions available to each player,

and U is the J×J matrix of expected utility payoffs for the row player, and U’, the

transpose of U, is the payoff matrix for the column player. We focus on single population

situations in which each player observes the frequency distribution of the past play of the

other players in the population.

3.2. Experimental Design

An experiment session consisted of 25 players playing two runs of 12 periods each.

In the first run , a single 3×3 symmetric game was played for 12 periods, and in the second

run, a different 3×3 symmetric game was played for 12 periods. A “mean-matching”

protocol was used. In each period, a participant’s token payoff was determined by her

choice and the percentage distribution of the choices of all other participants, pt, as

follows: the row of the payoff matrix corresponding to the participant’s choice was

multiplied by the vector of choice distribution of the other participants. Token payoffs

were in probability units for a fixed prize of $2.00 per period of play. In other words, the

token payoff for each period gave the percentage chance of winning $2 for that period.

The lotteries that determined final monetary payoffs were conducted following the

completion of both runs using dice. Specifically, a random number uniformly distributed
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on [00.0, 99.9] was generated by the throw of three ten-sided dice. A player won $2.00 if

and only if his token payoff exceeded his generated dice number. Payment was made in

cash immediately followingeach session.

Participants were seated at private computer terminals separated so that no

participant could observe the choices of other participants. The relevant game, or decision

matrix, was presented on the computer screen. Each participant could make a choice by

clicking the mouse button on any row of the matrix, which then became highlighted. In

addition, each participant could make hypotheses about the choices of the other players.

An on-screen calculator would then calculate and display the hypothetical payoffs to each

available action given each hypothesis. Participants were allowed to make as many

hypothetical calculations and choice revisions as time permitted. Following each time

period, each participant was shown the aggregate choices of all other participants and

could view a record screen with the history of the aggregate choices of other participants

for the entire run.

3.3. The experimental data

We select five games investigated in HS99, with properties that make them ideal

for a thorough study of learning dynamics and equilibrium selection. These are games 1,

13, 14, 16, and 19 of HS99 (see figure 1). We further investigate two additional versions

of game 13 (with 20 added to each cell, and with 20 subtracted from each cell) and an

additional version of game 16 (with 20 added to each cell). Games 1, 14, and 19 begin

with initial conditions far from uniform and very little movement is observed thereafter,

with the exception of one run of game 14. The game 13 versions have long dynamic paths

from initial conditions to the final outcome. The two versions of game 16 are

characterized by an almost equal split in outcomes. Although the two equilibrium

outcomes are equally observed, initial conditions fall in mainly one basin, resulting in a

separatrix crossing. The games are shown in figure 1. Altogether we have five game 1

runs, seven game 13 runs (three versions), five game 14 runs, five of each game 16

version, and five game 19 runs, for a total of 32 runs.
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4. Goodness of Fit of Initial Condition Predictions

In order to evaluate different initial conditions, we must decide on the appropriate

measures of fit and apply those measure on the complete models. Unfortunately, there is

no agreement in the literature on how to evaluate complete dynamic models. We group

candidate measures into two categories: (1) one-period ahead, and (2) T-period ahead.

The one-period-ahead category includes all the measures based on the one-period ahead

predictions of the model - that is, the theoretical choice probabilities for period t

conditional on the actual choices in period t-1. The standard log-likelihood measures

belong to this category, and they are natural for parameter estimation because the dynamic

models being fitted are Markovian (i.e. one-period ahead). The theoretical conditional

choice probabilities can also be used to construct alternative goodness-of-fit measures

such as the Root-Mean-Squared-Error (RMSE), and the Pearson Chi-square measure

(PCS).

In contrast, T-period ahead measures are based on the unconditional choice

probabilities for period T. Since closed-form solutions are rarely tractable, simulation

techniques are used to generate a large pseudo-sample of dynamic paths from which

various goodness-of-prediction measures can be computed. The stochastic nature of

finite-population dynamics implies that T-period ahead predictions are probabilistic:

yielding a non-degenerate probability distribution over the J-dimensional simplex (J being

the number of actions in the game). Since experimental data sets rarely contain more than

a dozen complete paths per game, small-sample problems arise. While one can construct

an estimate of the likelihood density of the data paths, these measures computed for small

sample sizes can be quite sensitive to the fine-structure of the T-period ahead probability

distributions, and hence not reliable indicators of goodness-of-prediction. We suggest an

alternative discrete-event measure that is reliable for small (but not too small) sample

sizes. We divide the J-dimensional simplex into J+1 equal-sized regions, with each of J

regions containing exactly one of the vertices of the simplex (see figure 2). The T-period-

ahead probability of being ineach region is computed from the pseudo-sample of dynamic

paths. Thus, likelihood density on a continuum is converted into J+1 discrete-event

probabilities; from these it is straightforward to compute likelihood measures.
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5. Models of Adaptive Dynamics

We focus our study on four of the leadingpopulation learning models: (1)

"Mental" Replicator (MR) dynamics, (2) Erev-Roth (1998) reinforcement learning, (3)

Camerer-Ho experience weighted attraction (EWA) dynamics, and (4) logit best-reply

with inertia and adaptive expectations (LBRIAE). These models where studied

extensively in Stahl (1999), and the latter was the winner of a horse race using a large data

set consisting of 5x5 and 3x3 symmetric normal-form games with population feedback.

Since our focus is on the impact of initial conditions for a particular dynamic rather than

comparisons across dynamics, we do not re-estimate the parameters of these dynamic

models on the new data set, but instead use the estimated parameters from Stahl (1999).

The four dynamics investigated have different basins of attraction in the games

investigated. Hence, the initial conditions are import. To illustrate this, the phase

diagrams displaying MR and EWA dynamics and separatrix for games 16 and 19 are

shown in Figure 3.

6. Results

We begin with the trivial observation that in terms of initial-period fit, the actual

initials perform best; this establishes the benchmark for the best possible initial-period fit

(Table 2). Far more interesting is the ranking of HS99 as the leading model in log-

likelihood (LL), RMSE, and PCS for each game, with the uniform period 0 and level-1

approaches second and third, respectively4 (). The uniform period 1 approach has worst

initial-period fit. However, one should note that whereas HS99 entails 12 parameters, the

level-1 model introduces one parameter only, whereas uniform period 0 and uniform

period 1 require no additional parameters. Tradeoffs of parsimony and accuracy are often

important considerations in the choice of a model.

4 By RMSE, level-1 is slightly better than uniform period 0.
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We proceed to examine one-period-ahead measures over periods 2-12. In Table 3,

we present the log-likelihood for periods 2-12. By this measure, the actual initials perform

dismally. The actual initials' standing does not improve looking at the PCS and RMSE

measures.

Notwithstanding the dismal performance of actual initials, perhaps encouraging to

studies of dynamics which apply one-period-ahead criteria is the fact that these criteria are

fairly robust to the other alternative initial conditions considered here. With the exception

of MR, differences in periods 2-12 likelihood within each dynamic over initial conditions

remain below 2.05.5 MR appears somewhat sensitive to initial conditions. Partly due to

the robustness of one-period-ahead measures toreasonableinitial conditions (i.e. in the

neighborhood of level-1 behavior), horse-race rankings of the four models examined, by

any of the one-period-ahead criteria, would also be robust to reasonable initial conditions.

The winner of the horse race, LBRIAE, wins by a substantial margin taking each game

separately as well as on overall performance.

Next, we turn our attention to T-period-ahead measures. Robustness over initial

conditions is no longer the case. The model of HS99 is a clear winner in games 1 and 19

for all dynamics, but performs terribly in games 14 and 16 for all dynamics. It ends up

losing in overall performance to the uniform-period-1 approach because of games 14 and

16.

To get to the bottom of this conundrum, we must compare the different games.

We note that games 14 and 16 were characterized by separatrix crossings. Since the

dynamic models we investigage are weak at capturing such crossings, disperse initials such

as uniform period 1 initials prove helpful by generating some initials in the other basin.

We conjecture that in games for which the separatrix is near the centroid or the noisy

level-1 behavior, variability is essential for T-Period ahead goodness-of-prediction, and

uniform period 1 initial conditions provide the greatest variability of all models of initial

conditions under consideration.

5 It is noteworthy that in terms of the period 2-12 log-likelihood, the best initial conditions for the Erev-
Roth model are uniform period 1, as we should expect since the parameters were obtained by maximizing
the period 1-12 likelihood under this initial condition assumption.
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On the other hand, uniform period 0 initial conditions are quite reliable at

predicting initial play. Can these apparently contradictory findings be reconciled? When

uniform period 1 initial conditions are used for a T-period ahead measure, the first period

of play is simulated, so although the a priori probability ofeach choice is 1/J, the realized

first period choices have a multinomial distribution, and this diversity is crucial for T-

period ahead prediction in games like 16. In contrast, when uniform period 0 initial

conditions are used, the fictitious period 0 is not simulated, and so lacks diversity. If it

were simulated, the T-period simulated path would be virtually the same as a T+1 period

simulated path from uniform period 1 initial conditions. This interpretation of our

findings, suggest that the overall best model of initial conditions would be uniform period

0 with diversity.6

7. Conclusions

For one-period-ahead measures of goodness-of-fit the winners are, HS99, the

uniform-period-0 approach, and level-1 in that order. For the T-period-ahead discrete-

event measure, these same initial condition models perform well except for games 14 and

16, where uniform-period-1 wins, due to the added diversity of simulating a T-period path

from uniform initial conditions.

In contrast to the one-period-ahead measures, ranking of dynamics using T-period

ahead measures critically depends on the choice of initial conditions, with EWA winning

for all but HS99 initials, and LBRIAE a close second.

6 To provide a rigorous test of this conjecture, we would need to estimate the parameters of a model that
explicitly incorporates period 0 diversity. Since we want to focus this paper on initial conditions and not
parameter estimation, we leave this task for the future.
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Table 1

Parameter Estimate Parameter Estimate

ν1 0.560 α 0 0.079

ν2 0.480 α 1 0.310

νmax 0.331 α 2 0.039

νNE 0.902 α max 0.127

νW 0.248 α NE 0.023

εw 0.845 αW 0.422

µw 0.045

Key: . The parametersν1 andν2 are the precision parameters for level-1 and level-2, respectively. The

precision parameterνNE corresponds to the Nash type andνw to the worldly type. The parameterµw is the

precision parameter for the boundedly rational types in the worldly evidence;εw is the mixture parameter

in the worldly type’s prior; andαt is the proportion of population using rule t, where t∈{0,1,2} denotes

the level-t rule, t = max denotes the maximax rule, t = NE denotes the Nash evidence, and t = W denotes

the worldly rule.
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Table 2. Goodness of Fit -- Initial Period

Log Likelihood

Uniform P(0)

Game
Uniform

P(1)7
Level-1 M. Rep. RE EWA LBRIAE HS99 Actual

1 -27.47 -24.04 -23.54 -24.56 -23.62 -22.62 -23.34 -20.55

13 -27.31 -23.46 -23.90 -24.36 -24.06 -23.44 -23.42 -20.91

14 -27.25 -7.51 -9.47 -9.44 -9.88 -14.64 -6.23 -5.02

16 -27.14 -23.57 -24.06 -23.03 -24.20 -22.94 -23.72 -21.68

19 -27.25 -32.86 -27.24 -29.29 -27.74 -24.27 -25.09 -22.68

Total -136.40 -111.44 -108.21 -110.69 -109.51 -107.91 -101.80 -90.84

PCS

Uniform P(0)

Game
Uniform

P(1)
Level-1 M. Rep. RE EWA LBRIAE HS99 Actual

1 13.52 7.53 5.24 6.517 5.270 3.347 7.64 0

13 11.99 4.25 4.95 5.846 5.240 4.308 5.75 0

14 42.79 3.03 5.79 5.711 6.382 14.032 1.43 0

16 11.07 3.32 4.28 2.308 4.559 2.168 5.81 0

19 8.66 70.58 14.45 23.550 17.060 2.737 5.30 0

Total 17.61 17.74 6.94 8.787 7.702 5.318 5.19 0

RMSE

Uniform P(0)

Game
Uniform

P(1)
Level-1 M. Rep. RE EWA LBRIAE HS99 Actual

1 0.245 0.133 0.134 0.175 0.139 0.116 0.134 0

13 0.231 0.133 0.148 0.164 0.153 0.129 0.131 0

14 0.438 9.5E-02 0.151 0.152 0.161 0.262 0.048 0

16 0.223 0.124 0.142 0.094 0.147 0.095 0.112 0

19 0.196 0.170 0.144 0.170 0.147 0.101 0.134 0

Total 0.281 0.133 0.144 0.154 0.150 0.154 0.116 0

7 Note: Log-likelihood for the initial periodunder the uniform period 1 approach differs over games due to the

different number of players (24-25) in different runs.
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Table 3 Goodness of Fit -- One period-ahead measures -- Periods 2-12

Mental Replicator:

Init. Cond's: LL(2-12): RMSE(2-12): PCS(2-12):

Uniform P1

1 -110.328 0.096 39.203

13 -203.938 0.134 49.053

14 -136.119 0.087 21.018

16 -158.228 0.105 42.910

19 -126.308 0.099 34.228

Total -734.92 0.105 37.282

Level-1

1 -107.045 0.080 36.387

13 -205.670 0.140 52.625

14 -136.724 0.092 26.084

16 -155.742 0.094 39.256

19 -122.402 0.079 29.031

Total -727.583 0.099 36.677

Uniform P0

1 -107.239 0.081 36.420

13 -205.449 0.139 52.165

14 -136.401 0.090 24.970

16 -155.906 0.095 39.453

19 -122.667 0.081 29.389

Total -727.662 0.099 36.480

HS99

1 -103.592 0.070 31.796

13 -208.691 0.150 59.049

14 -138.118 0.097 30.922

16 -152.997 0.086 36.741

19 -120.866 0.073 26.506

Total -724.264 0.010 37.003

Actual

1 -105.41 0.077 33.888
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13 -206.023 0.141 53.721

14 -141.654 0.106 44.302

16 -153.686 0.086 36.800

19 -122.301 0.081 28.307

Total -729.075 0.101 39.404

Erev-Roth:

Init. Cond's: LL(2-12): RMSE(2-12): PCS(2-12):

Uniform P1

1 -101.678 0.068 30.778

13 -199.828 0.120 45.835

14 -134.925 0.077 23.682

16 -151.866 0.078 38.234

19 -120.683 0.068 36.753

Total -708.981 0.084 35.056

Level-1

1 -101.77 0.065 32.731

13 -200.32 0.122 47.265

14 -135.92 0.080 27.632

16 -151.72 0.077 38.095

19 -120.37 0.065 36.540

Total -710.10 0.084 36.453

Uniform P0

1 -102.429 0.070 31.962

13 -200.069 0.121 46.161

14 -135.062 0.079 24.276

16 -151.564 0.076 38.225

19 -121.788 0.070 40.442

Total -710.913 0.085 36.213

HS99

1 -100.832 0.062 31.360

13 -200.919 0.123 48.972

14 -136.162 0.080 28.707

16 -151.561 0.076 38.036
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19 -120.131 0.064 36.093

Total -709.606 0.084 36.634

Actual

1 -101.138 0.065 31.535

13 -200.811 0.123 48.694

14 -136.188 0.080 28.792

16 -151.604 0.076 38.034

19 -120.357 0.066 36.324

Total -710.097 0.085 36.676

EWA Dynamics:

Init. Cond's: LL(2-12): RMSE(2-12): PCS(2-12):

Uniform P1

1 -98.401 0.056 37.858

13 -194.412 0.105 34.224

14 -132.743 0.073 20.320

16 -157.465 0.098 40.941

19 -117.754 0.059 37.143

Total -700.774 0.081 34.097

Level-1

1 -98.63 0.056 38.366

13 -195.09 0.106 34.641

14 -133.47 0.074 21.053

16 -156.69 0.098 40.758

19 -117.92 0.059 37.520

Total -701.81 0.081 34.468

Uniform P0

1 -98.568 0.056 37.858

13 -194.924 0.105 34.224

14 -133.26 0.073 20.320

16 -156.829 0.098 40.941

19 -117.885 0.059 37.143

Total -701.466 0.081 34.097

HS99
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1 -97.9523 0.055 37.320

13 -195.943 0.110 36.858

14 -133.848 0.075 22.361

16 -155.273 0.093 38.900

19 -117.616 0.059 36.207

Total -700.633 0.081 34.329

Actual

1 -98.135 0.055 37.225

13 -195.820 0.108 36.953

14 -135.218 0.079 26.979

16 -155.872 0.095 39.683

19 -117.630 0.059 35.671

Total -702.674 0.082 35.302

LBRIAE

Init. Cond's: LL(2-12): RMSE(2-12): PCS(2-12):

1 -95.520 0.058 22.508

13 -190.892 0.088 27.151

14 -134.287 0.072 23.225

16 -149.752 0.075 29.497

19 -115.203 0.057 20.905

Total -685.664 0.071 24.657
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Table 4: Goodness of Fit – T-period-ahead Discrete Event Measure

Period 12 Hit Rates and LL Measure by Model and Game

A B C Other
1 5 0 0 0 5

13 0 0 6 1 7
14 0 4 1 0 5
16 5 5 0 0 10
19 0 5 0 0 5

Mental Replicator

Uniform Period 1:

Game A region B region C region
Central
region LL

1 0.515 0.458 0.000 0.027 -0.288
13 0.009 0.000 0.978 0.013 -0.008
14 0.000 0.920 0.074 0.006 -0.255
16 0.725 0.274 0.000 0.001 -0.351
19 0.630 0.347 0.000 0.023 -0.460

-1.363
Level-1:

Game A region B region C region
Central
region LL

1 0.518 0.451 0.000 0.031 -0.286
13 0.008 0.000 0.979 0.013 -0.008
14 0.000 0.982 0.014 0.005 -0.380
16 0.881 0.118 0.000 0.001 -0.491
19 0.657 0.316 0.000 0.027 -0.501

-1.665
Uniform Period 0:

Game A region B region C region
Central
region LL

1 0.489 0.480 0.000 0.031 -0.311
13 0.008 0.000 0.980 0.013 -0.008
14 0.000 0.977 0.018 0.005 -0.358
16 0.868 0.131 0.000 0.001 -0.472
19 0.705 0.271 0.000 0.025 -0.567

-1.716
HS99:

Game A region B region C region
Central
region LL

1 0.980 0.014 0.000 0.006 -0.009
13 0.007 0.000 0.981 0.012 -0.007
14 0.000 0.994 0.004 0.003 -0.489
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16 0.947 0.052 0.000 0.001 -0.653
19 0.128 0.846 0.000 0.026 -0.072

-1.230

EWA Dynamics

Uniform Period 1:

Game A region B region C region
Central
region LL

1 0.796 0.203 0.001 0.000 -0.099
13 0.010 0.002 0.975 0.013 -0.009
14 0.000 0.889 0.107 0.005 -0.235
16 0.706 0.283 0.000 0.010 -0.350
19 0.277 0.723 0.000 0.000 -0.141

-0.834
Level-1:

Game A region B region C region
Central
region LL

1 0.959 0.041 0.000 0.000 -0.018
13 0.004 0.000 0.985 0.012 -0.006
14 0.000 0.963 0.033 0.004 -0.310
16 0.850 0.139 0.000 0.011 -0.463
19 0.075 0.925 0.000 0.000 -0.034

-0.831
Uniform Period 0:

Game A region B region C region
Central
region LL

1 0.923 0.077 0.000 0.000 -0.035
13 0.004 0.000 0.985 0.012 -0.006
14 0.000 0.947 0.049 0.005 -0.282
16 0.825 0.165 0.000 0.011 -0.433
19 0.147 0.853 0.000 0.000 -0.069

-0.825
HS99:

Game A region B region C region
Central
region LL

1 1.000 0.000 0.000 0.000 0.000
13 0.004 0.000 0.984 0.012 -0.006
14 0.000 0.975 0.021 0.004 -0.344
16 0.910 0.081 0.000 0.009 -0.567
19 0.001 0.999 0.000 0.000 0.000

-0.917

Erev-Roth:

Uniform Period 1:

Game A region B region C region
Central
region LL

1 0.555 0.418 0.002 0.025 -0.256
13 0.105 0.008 0.862 0.026 -0.055
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14 0.000 0.884 0.110 0.007 -0.235
16 0.729 0.271 0.000 0.000 -0.352
19 0.520 0.449 0.000 0.031 -0.348

-1.247
Level-1:

Game A region B region C region
Central
region LL

1 0.772 0.206 0.000 0.022 -0.113
13 0.039 0.000 0.941 0.021 -0.023
14 0.000 0.994 0.005 0.001 -0.466
16 0.885 0.115 0.000 0.000 -0.497
19 0.259 0.712 0.000 0.029 -0.147

-1.245
Uniform Period 0:

Game A region B region C region
Central
region LL

1 0.539 0.430 0.000 0.031 -0.268
13 0.029 0.000 0.957 0.014 -0.016
14 0.000 0.976 0.020 0.004 -0.348
16 0.976 0.024 0.000 0.000 -0.813
19 0.539 0.427 0.000 0.034 -0.370

-1.816
HS99:

Game A region B region C region
Central
region LL

1 0.974 0.020 0.000 0.007 -0.012
13 0.061 0.000 0.913 0.026 -0.034
14 0.000 0.998 0.001 0.001 -0.571
16 0.922 0.078 0.000 0.000 -0.572
19 0.095 0.888 0.000 0.017 -0.051

-1.241

LBRIAE

Game A region B region C region
Central
region LL

1 0.925 0.073 0.000 0.002 -0.034
13 0.013 0.000 0.958 0.029 -0.016
14 0.000 0.977 0.022 0.002 -0.340
16 0.826 0.172 0.000 0.002 -0.424
19 0.072 0.925 0.000 0.003 -0.034

-0.848
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Figure 1. The Games

Game 1 Game 19

A B C A B C

A 70 60 90 A 80 60 50

B 60 80 50 B 60 70 90

C 40 20 100 C 0 0 100

Game 14 Game 13

A B C A B C

A 50 0 0 A 60 60 30

B 70 35 35 B 30 70 20

C 0 25 55 C 70 25 35
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Game 13 (-20) Game 13 (+20)

A B C A B C

A 40 40 10 A 80 80 50

B 10 50 0 B 50 90 40

C 50 5 15 C 90 45 55

Game 16 Game 16 (+20)

A B C A B C

A 20 0 60 A 40 20 80

B 0 60 0 B 20 80 20

C 10 25 25 C 30 45 45
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Figure 2 The discrete-event measure

Dividing the J-dimensional simplex into J+1 equal-sized regions, with each of the J regions

containing exactly one of the vertices of the simplex

B C

A

O

CB

A
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Figure 3

Game 16 Mental Replicator
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Game 16 EWA
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Game 19 Mental Replicaotr
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Game 19 EWA


