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We test the population rule learning model for symmetric normal-form

games, and strongly reject: (i) no rule learning,
no sophisticated evidence. Further, trembles and

level-2 behavior increases over time.
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1. Introduction.

Are human subjects in game theory experiments
learning theories assume they are?l At one extre
2E.g. Selten (1990, 1991), Kandori, et al (1993),
1897), Friedman,

et al (1995), Roth and Erev (199

Camerer and Ho (1997, 1999), Cheung and Friedman

Roth (1998), to mention only a few.

evolutionary game theory could just as well be th
a byproduct of natural selection, not a conscious
players’ minds. Most of the learning dynamics ig
that human players might be assumed to have avail
play and knowledge of the game. Such information
(a) hypothetical payoffs from actions they could |
the best reply to the recent past, and (c) iterat
In this paper, we call learning "sophisticated" ol
this richer information, especially the iterates

Whether or not human players incorporate such inf
computations is an empirical question and should 1
model.

With few exceptions, learning models also res!
actions as the objects of the learning process. I
this view is that nothing can be learned that the
but similar situation.

For example, the populati

in first game, but in the next game action A might

the game changes,

researchers who are university professors know vet

(and hopefully students learn)

me,

5) ,

the learning model must be rewvis

are ways of thinkir

as simple minded as most
the players in
Mookherjee and Sopher (1994,
Anderson,

et al (1997),

(1997, 1998), and Erev and

bughtless amoeba; learning is
internal process in the

nore much of the information
able: e.qg. the history of
would enable them to compute
have chosen but did not, (b)
s of the best reply mapping.
nly if the dynamics admit

bf the best reply mapping.

prmation and do these

not be assumed away by the

frict attention to the

An obvious shortcoming of
player can transfer to a new
bn may converge to action A
when

r be dominated. Hence,

sed and reinitialized. Yet,
ry well that what we teach

ng about problems: high level




algorithms for recognizing essential features and| solving problems.

In this spirit, the rule learning models of Stahl (1996, 1999a, 2000, 2001)

hypothesize a rich space of behavioral rules which players can learn based on

performance feedback. These rules span several 1

(level-n bounded rationality, as well as herd beh

call this rule learning "learning sophistication"|.

in favor of learning sophistication.3
The current paper conducts classical hypothes
rule learning model to demonstrate that sophistic

sophistication are empirically significant.

avior and Nash behavior).

evels of sophigtication

We

There is growing evidence

is tests of the population

ated learning and learning

(N,A,U) in normal form,

2, The General Framework and the Rule Learning Mbdel.
Consider a finite, symmetric, two-player game|G =
where N = {1,2} is the set of players, A = {1,

available to each player, and U is the JxJ matrix
for the row player. For notational convenience,
denote the uniform distribution over A. Further,
frequency of the all players’ actions in period t

{p® ....p*'} as the history of all players’ choicd

novelty that p° is substituted for the null histor

available to a representative player at the begini
(G,h") .
The population rule learning model is describ

(2002) . Briefly, a behavioral rule is a mapping

1 Nagel (1995), Ho, et al (1998), Duffy and Nagel
1999%a,b, 2000, 2001), and Sosino, et al (1998).

let p°

. J} is the set of actions

of expected utility payoffs

(1/3, 1/J) "

let p* denote the empirical

and define ht

28 up to period t with the

Y. Thus, the information

ning of period t is Qf =

ed fully in Stahl and Haruvy

from information Q* to A(Ad),

{(1997), Stahl (1996,




the set of probability measures on the actions A.
behavioral rule in a space of behavioral rules R.

The second element in the model is a probabil
¢(p,t) denotes the probability of using rule p in
non-negativity restriction on probability measure

specified in terms of as the log-propensity, wip,

e(p,t) exp(w(p,t)/[Jexp(w(x
Given a space of behavioral rules R and probabili
probability distribution over actions for period

The third element of the model is the equatio

w(p,t+l) = Bew(p,t) + B,p(Q%)Upt, £

where B, € [0,1] is a decay parameter and 6, > 0 i

The space of rules consists of a number of em
rules that can be combined to span a larger space
are the "evidence-based" rules introduced in Stah

rule is a logit best reply (LBR) to adaptive expe

where the latter is given by

at(8) = (1-8)qt-i(6) + 6ptt ,

and g°(6) = p°.

The level-2 rule is a LBR to the belief that

The Nash rule is a LBR to the belief that each Na

Let p € R denote a generic

ity measure over the rules:

period t. Because of the

s, the learning dynamics are

t), such that

, t) dx]

ties ¢, the induced
p(t) = IR p(QF)de (p,t) .

motion:

pr t > 0,

S a scaling parameter.
pirically relevant discrete

of behavioral rules. These

L (1999%9a, 2000). The level-1

rtations of other players,

for t = 1,

pthers use the level-1 rule.

sh equilibrium action is




equally likely. Other rules emerge from convex c

beliefs, with weights given by v (Vyr Vyr vy) .
function for the evidence-based rules is specifie
with the mean (v,6), and variance o2.

In addition to these evidence-based rules, th
follows g*(6) interpreted as: with probability (1
his/her choice propensities from last period, and
player mimics the population distribution of choi

to "follow the herd" is denoted by §. Finally, t

produces uniformly random choices, with an initia

Since the data for this paper come from exper

game for T periods, followed by a second run with

periods, we need to specify the initial propensit

the second run. We use a one-parameter specifica

w(p,T+1) (L-1)w(p,1) + 7w(

where T* indicates the update after period T of tl

transference parameter.

The theoretical model involves 10 parameters:

6, T) .

0, By: By

choice probabilities:

At

; (&)

l

J B eln,t]8)

from which the log-likelihood of the data can be

The rule propensities and law ¢

ombinations of these focal
The initial log-propensity

d as a normal distribution

ere is a herd rule that
+6) the player repeats
with probability 6 the
ces. The initial propensity
here is a tremble rule that
L propensity denoted by €.
iments with one run with one
a different game for T

ies for the first period of

cion:

p, T*)

he first run, and 7 is the

(0, &, vy, vy, vy,

£

f motion yield population

dp

ralculated.




3. The Experimental Data and Methodology.

The population rule learning model is confron
different experiments, both using binary lottery
consisted of four sessions, each with two rung of
5x5 game in each run. The second experiment cons
with two runs of 12 periods and one symmetric 3x3
experiments, in each period each participant was 1
participants and was given the history of choices
The binary lotteries were not resolved until all j
completed. The games and choice data can be obta
www.eco.utexas.edu/faculty/Stahl/experimental.

We estimate the parameters of the models usin
approach.

To separate out the first period effect

we compute the log-1likelihood (LL) wvalue for all !

run, denoted LL(-1). As another measure of fit, i

Squared Error (RMSE) summed over all periods base
between the empirical choice frequences, p%, and t
probabilities, pe(t).

goodness-of-fit.

We also compute the Pearsor

ted by data from two

games. The first experiment
15 periods and one symmetric
isted of four sessions, each
game in each run. For both
natched with the n-1 other
of those n-1 other players.

periods of both runs were

ined at

y the maximum likelihood

s from the dynamic effects,
put the first period of each
ve compute the Root Mean

1 on the Euclidean distance

he predicted choice

Chi-Square (PX?) measure of

r the entire pooled data set

4. Maximum Likelihood Estimates and Hypothegisg Tests.
The maximized log-likelihcod (LL) function fo1
is -4720.09. Table I displays the maximum likelil

Note that the estimates of three parameters fall ¢

14

= =1, =

parameter space: and 7 1.

3 0, BO

indicating that a model with just seven "interior

as well as the full ten parameter model.

We in

nood parameter estimates.
pnn the boundary of the
terpret this finding as

' parameters can fit the data




Table II displays four measures of in-sample
of the holdout data given the parameter estimates
first period of each run, LL(-1), (iii) the root
the forecast, and (iv) the Pearson Chi-square (Py

Three alternative models are nested within ou
model. First, by restricting the learning parame
learning completely, leaving the "Diverse Worldly
further restricting the variance parameter ¢2 = 0
the population,
eliminating all evidence except level-1 evidence
the "LBRIAE" model.? The corresponding in-sample
restricted models is reported in Table II.° Clea
can be rejected at all commonly used acceptance 1

LL(-1) demonstrates that the improvement in L
phenomena. While the RMSE measures are not subst
consistent with the other measures, and the Pears
which is much more sensitive than RMSE, strongly
Therefore, we conclude that sophisticated learnin

are empirically significant.

5. What Rules are Learned.

The grid for (v,, v, and 6) used to perform th
eq(5) consists of 75 points: 5 points in the 6 dig
2 In Stahl (1999b), "action reinforcement" learnii

Roth-Erev reinforcement, Camerer-Ho EWA dynamics,
against each other in a horse race. LBRIAE was tl
3Out—of—sample performance is similar (Stahl, 199

leaving the "Worldly LBRAE" model|

goodness of fit: (i) the LL

(ii) the LL excluding the

’

mean sequated error (RMSE) of

) goodness-of-fit measure.

r revised rule learning

ter B, we eliminate rule

7

LBRIAE" model. Second, by
we eliminate diversity in

Third, by further

(v, = v3 = 0), we obtain
performance of each of these
rly each of these hypotheses
evels.

L is not just a first-period
antially different, they are
bn Chi-square statistic,
reinforces our findings.

y and learning sopistication

e integration required by

nension and 15 points for

ng models (replicator dynamics,

and LBRIAE) were pitted
ne clear winner.
b)) .




(vy, v,). Given the estimated parameters of the 1

compute the propensities, ¢(v,0;t), for each grid

experimental session. The change in ¢(v,0;t) is

remarkably similar over sessions. From the first

session (i) trembles decline dramatically, (ii) t

importance, (iii) the level-1 rules and the rules
level-2 evidence increase in importance, and (iv)
expectations declines (mass shifts to higher 6 va

Computation of the predicted choice frequenci
with non-negligible propensities reveals that the
period by period. Thus, it is not surprising tha
over these rules produces richer behavioral dynam

the simpler models nested within the rule learnin

ule learning model, we can
point over time for each
continuous over time and
to the last period of a

he herd rules decline in
that combine level-1 and
the inertia in adaptive
lues) .

es of the handful of rules
se rules are quite distinct
t the changing ¢ distribution

ics than can be generated by

g model.
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Table I. Maximum Likelihood Parameter Estimates

Population Diverse Wor[ldly
Parameter Rule Learning Worldly IBRIAE LBRIAE LBRIAE
) 0.533 0.516 0.532 0.573
> 0.090 0.033 0.p59 0.053
v, 0.797 0.968 0.358 0.400
v, 0.070 0.092 0.022
v, 0.000 0.000 0.000
6 0.647 0.641 0.816 0.749
0 0.767 0.757
B, 1.000
8, 0.008
T 1.000
LL -4720.09 -4730.79 -4756| 04 -4772.52
No. of
interior 7 6 5 4

parmeters




Table TIT.
Model
Pop Rule Learning
Div Worldly LBRIAE
Worldly LBRIAE

LBRIAE

11

In-Sample Performance Measures

LL LL(-1)
-4720.09 -4292 .34
-4730.79 -4305.20
-4756.04 -4329.20
-4772.52 -4338.17

RMSE

0.0790

0.0800

0.0829

0.0859

px2

834.6

866.5

937.0

993.7



12
(for reviewer’'s convenience - not for publication)
Appendix A: Out-of-Sample Performance Measures
Model LL LL(-1) RMSE Py2
Pop Rule Learning -4754 .17 -4325.98 0.0834 909.3
Div Worldly LBRIAE -4760.96 -4335.62 0.0833 936.3
Worldly LBRIAE -4793.51 -4368.02 0.0872 1048
LBRIAE -4794 .42 -4359.11 0.0878 1068
(for reviewer’s convenience - not for publication)
APPENDIX B. Table II from Stahl (1999b)
Model Deviations np LL LL(-1) RMSE Py2
Mental Replicator
ratio form: both 3 -5386.62 -4918.46 .161 2290
logit form: both 3 -4992.78B -4563.06 .118 1437
Roth-Erev
uniform prior: mutations 7 -4916.93 -4402.76 .107 1305
insuff. reason: mutations 7 -4828.06 -4405.53 .0941 1129
LBR trembles™ 3 -4805.18 -4369.35 .0882 1033
EWA
power form: trembles® 5 -4796.04  -4366.37  .0904 998
logit form: trembles® 6 -4783.64  -4353.29  .0892 968
logit form: trembles” 4 -4784 .07 -4353.28 .0894 966
LBR" trembles” 4 -4772.52  -4338.17  .0859 994
Rule-Learning 6 -4737.40 -4314 .32 .0814 971
*These models implicitly contain a form of mutations.
"both" = mutations and trembles
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