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Abstract

A model of population rule learning is formulated and estimated using experimental data. When
predicting the population distribution of choices and accounting for the number of parameters, the
population rule learning model is much better than aggregation of individually estimated rule learn-
ing models. Further, rule learning is a statistically significant and important phenomena even when
focusing on population statistics, and is much better than one-rule learning dynamics. © 2001 El-
sevier Science B.V. All rights reserved.
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1. Introduction

Recent learning research in one-shot games can be divided into two domains: (i) pop-
ulation learning or evolutionary dynamics as typified by replicator dynamics,1 and (ii)
individual learning.2 3 The first domain focuses on how the population distribution of
play changes over time, while the second domain focuses on how an individual’s behavior
changes over time.

Individualistic models are needed for investigating the nature and characteristics of indi-
vidual learning patterns and for assessing the amount of diversity in the population. Further,

∗ Tel.: +1-512-475-8541; fax:+1-512-571-3510.
E-mail address:stahl@eco.utexas.edu (D.O. Stahl).

1 For example, Hofbauer and Sigmund (1988), Van Huyck et al. (1994), and Cheung and Friedman (1997).
2 For example, Cheung and Friedman (1997), Crawford (1994), Mookherjee and Sopher (1994), Cooper and

Feltovich (1996), Camerer and Ho (1997, 1999), Rapoport et al. (1997), and Stahl (1996, 1997a,b, 1999).
3 Studies that examine both include Bush and Mosteller (1955), Friedman et al. (1998), and Roth and Erev (1995).
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if one wants to construct a cognitive theory of individual behavior in games, then individual-
istic models are essential because individual details could be masked in population statistics.

From a decision-theoretic framework, however, for one-shot games it is necessary and
sufficient for a player to have a belief about the other players’ actions, and when the other
players are randomly drawn from a population of potential players such a belief is equivalent
to a forecast of the population distribution of other players’ actions. It is neither necessary
nor sufficient to know anything about a single individual’s learning dynamics, since one’s
actual opponents are random draws from a population. For example, to know which side of
the road to drive on in the US, I do not need to know any specific history about the driver
approaching me on the highway; I only need to know that in the US all sober drivers stay
on the right side of the road.

Ideally, as in general equilibrium economics, one would like a theory of individual learn-
ing that aggregates up to a theory of population learning. However, we will encounter similar
difficulties in finding aggregation theorems with reasonable assumptions. Of course, we can
estimate individualistic models and then aggregate. But there is only so much information
in any given dataset. If it is used to estimate a multitude of parameters of individualistic
models, it does not follow that the prediction following aggregation is better than a predic-
tion from a population (or representative agent) model with far fewer parameters. We will
address this pertinent empirical question.

We focus on the class of rule learning models of Stahl (1996, 1997a,b, 1999) (hereafter
S96, S97a,b, and S99). This is a rich class of learning models that encompasses action
reinforcement (Roth and Erev, 1995; Erev and Roth, 1998), fictitious play (Brown, 1951),
and belief updating (Mookherjee and Sopher, 1994; Camerer and Ho, 1997, 1999).4 Briefly,
a “rule” is a mapping from the game and history of play to a mixed strategy. For example,
a noisy best response to the recent past is a Cournot-like rule that describes much of the
behavior observed in experiments. Iterating once more we have a “level-2” rule that is a
noisy best response to the best response to the recent past.

Complicating the econometric estimation of rule learning models is the fact that the rule
used by an individual is not directly observable — only the action taken is observable —
and in any model with properly specified error structures all rules will have full support on
the available undominated actions. In an individualistic model of rule learning (S97b), the
posterior probability of the rule conditional on the history was computed, but the computa-
tional complexity necessitated the use of precarious approximations. This problem can be
potentially avoided by a population learning model because the experience of many indi-
viduals using and evaluating different rules gets merged into the population experience, so
in essence it is as if the population evaluates all the rules.

In Section 2 we review the individual rule learning model of S97a, spell out aggregation
of that model, and develop a population version of rule learning. Section 3 describes the
experimental design and data, and Section 4 describes the econometric specification and
computational issues. Section 5 presents the results, and Section 6 discusses our findings.

4 While Camerer and Ho consider both reinforcement learning and belief learning, they formulate a single
hybrid rule that combines these two aspects rather than allowing both types of rules to exist simultaneously in the
population. In contrast, our rule learning model allows for many rules to exist simultaneously in the population
and in the minds of players.
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2. Theory

We begin with a description of the game environment and then present the theory and
operational specifics of the model to be tested in this paper. For a more in-depth description
of the general theory of rule learning, see S97a and S99.

2.1. The game environment

Consider a finite, symmetric, two-player gameG ≡ (N, A, U) in normal form, where
N ≡ {1, 2} is the set of players,A ≡ {1, . . . , J } is the set of actions available to each
player, andU is theJ × J matrix of expected utility payoffs for the row player, andU ′, the
transpose ofU , is the payoff matrix for the column player. For notational convenience, let
p0 ≡ (1/J, . . . , 1/J ′) denote the uniform distribution over actionsA.

Let I denote the population of individuals from which the players are randomly drawn.
We will use a superscripti to denote a particular individual player fromI . We focus on
single population situations in which each player is matched in every period with every
other player inI ; hence, the payoff relevant statistic for any given player is the probability
distribution of the choices of the other players in the population, and this information is
available to the players.5 To this end,pt will denote the empirical frequency of all players’
actions in periodt , andpit will denote the empirical frequency of the actions of all players
other than playeri. The first period of play will be denoted byt = 1. It is also convenient
to defineht ≡ {p0, . . . , pt−1} as the history of all players’ choices up to periodt with the
novelty thatp0 is substituted for the null history, and similarlyhit ≡ {pi0, . . . , pit−1} will
denote the history observed by playeri, wherepi0 ≡ p0 for all i ∈ I . Thus, the information
available to playeri at the beginning of periodt is Ω it ≡ (G, hit).

2.2. The general theory of rule learning

A behavioral rule is a mapping from informationΩ it to ∆(A), the set of probability
measures on the actionsA. For the purposes of presenting the abstract model, letρ ∈ R

denote a generic behavioral rule in a space of behavioral rulesR; ρ(Ω it) is the mixed
strategy generated by ruleρ given informationΩ it .

The second element in the general theory is a probability measure over the rules:ϕi(ρ, t),
the probability of using ruleρ in period t . Because of the non-negativity restriction on
probability measures, it is more convenient to specify the learning dynamics in terms of a
transformation ofϕi that is unrestricted in sign. To this end, we definewi(ρ, t) implicitly
as the log-propensity to use ruleρ in periodt , such that

ϕi(ρ, t) ≡ exp(wi(ρ, t))∫
exp(wi(x, t)) dx

. (1)

Given a space of behavioral rulesR and probabilitiesϕi , the induced probability distribution
over actions for periodt is

5 See Crawford (1994) for an adaptive learning model for such situations.
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p̂i(t) ≡
∫

R

ρ(Ω it) dϕi(ρ, t). (2)

Computing this integral is the major computational burden of this model.
The last element of the general theory is the equation of motion. The ‘law of effect’ states

that rules which perform well are more likely to be used in the future. This law is captured
by the following dynamic on log-propensities:

wi(ρ, t + 1) = β0w
i(ρ, t) + (1 − β0)g(ρ, Ω it+1), for t ≥ 1, (3)

whereg(·) is the reinforcement function for ruleρ conditional on informationΩ it+1 =
(G, hit+1). The inertia parameterβ0 determines how much weight is given to the past versus
new reinforcement information. It is natural to assume thatg(ρ, Ω it+1) is proportional to
the expected utility that ruleρ would have generated in periodt :

g(ρ, Ω it+1) = β1p̂(Ω it; ρ)Upit, (4)

whereβ1 > 0 is a scaling parameter that converts expected utility units into log-propensity
units. Then, for smallβ0 and largeβ1, past propensities would be quickly swamped by new
performance evidence, whereas for largeβ0 and smallβ1, past propensities would persist
despite new evidence.

Given a space of rulesR and initial conditionswi(·, 1), the law of motion, Eq. (3),
completely determines the behavior of the system for allt > 1. The remaining operational
questions are (1) how to specifyR, and (2) how to specifywi(·, 1).

An attractive feature of this rule learning model is that it encompasses a wide variety
of learning theories. For instance, to obtain replicator dynamics, we can simply letR be
the set ofJ constant rules that always choose one unique action inA for all information
states. Fictitious play and Cournot dynamics can be seen as very special cases in which
R is a singleton rule which chooses a (possibly noisy) best-response to a belief that is a
deterministic function of the history of play. Moreover, the general model can include these
constant rules, best-response rules and other rules.

2.3. Aggregation

Let µ be a probability measure on the population,I , of individuals. Then aggregation of
choice probabilities would give

p̂(t) ≡
∫

I

p̂i(t) dµ =
∫

I

∫
R

ρ(Ω it) dϕi(ρ, t) dµ. (5)

For a model of “population learning” not based on aggregation of individual behavior, we
(i) usept , the distribution of choices of the whole population,6 in lieu of the set{pit}i∈I ;
(ii) apply the law of motion tow(ρ, t) = ∫

I
wi(ρ, t) dµ:

6 We are implicitly assuming that the population is large enough so the influence of one member is negligible.
Without this assumption, the personalized information of each player would be needed for econometric estimation,
which would increase the computational complexity, make the state space for conditional probabilities grow
exponentially over time, and render the model inapplicable to datasets with only aggregated choice information.
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w(ρ, t + 1) = β0w(ρ, t) + (1 − β0)g(ρ, Ωt+1), for t ≥ 1, (3′)

and (iii) determine population rule probabilities,ϕ(·, t), by

ϕ(ρ, t) ≡ exp(w(ρ, t))∫
exp(w(x, t)) dx

. (1′)

However, note that because of the non-linearity of the logit function, Eq. (1′), the population
rule probabilities,ϕ(ρ, t), as defined by Eqs. (1′) and (3′), is not necessarily the same
as predicted by aggregation of the individual rule probabilities:

∫
I
ϕi(ρ, t) dµ. In other

words, using Eqs. (1′) and (3′) in our population learning model will introduce a potential
specification error. Of course, if the population were homogeneous, then the population
model using Eqs. (1′) and (3′) would be valid; however, homogeneity is soundly rejected
by empirical evidence (S97a).

Offsetting this potential specification error is a more palatable interpretation of rule
evaluation. Whereas Eq. (3) implicitly assumes that all rules are evaluated each period by
every individual, Eq. (3′) can be interpreted as requiring only that every rule is evaluated
by some individual and that the population as a whole looks like a representative individual
who has evaluated all the rules. We will econometrically estimate this “population rule
learning” model, and compare its predictive performance to aggregation of the individual
rule learning model.

2.4. The family of evidence-based rules

Our approach to specifying the space of rules is to specify a finite number of empirically
relevant discrete rules that can be combined to span a much larger space of rules. We will
use the family of “evidence-based” rules which was introduced in S97a,b and S99, as an
extension of the Stahl and Wilson (1995) (hereafter SW95) level-n rules. Evidence-based
rules are derived from the notion that a player considers evidence for and against the available
actions and tends to choose the action which has the most net favorable evidence based on
the available information.

The first kind of evidence comes from a “null” model of the other players. The null
model provides no reason for the other players to choose any particular strategy, so for
the first period of play by virtue of insufficient reason, the belief is that all strategies are
equally likely. The expected utility payoff to each available action given the null model is
y1(Ω

i1) ≡ Up0. We interprety1j as “evidence” in favor of actionj stemming from the null
model and no prior history.

For later periods (t > 1), the players have empirical data about the past choices of
the other players. It is reasonable for a player to use simple distributed-lag forecasting:
(1− θ)p0 + θpi1 for period 2 withθ ∈ [0, 1]. Lettingq it(θ) denote the forecast for period
t and definingqi0(θ) ≡ p0, the following forecasting equation applies for allt ≥ 1:

q it(θ) ≡ (1 − θ)q it−1(θ) + θpit−1. (6)

The expected utility payoff given this belief isy1(Ω
it; θ) ≡ Uqit(θ). We can interpret

y1j (Ω
it; θ) as “level-1” evidence in favor of actionj stemming from the null model and

prior historyhit .
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The second kind of evidence is based on the SW95 “level-2” player who believes all
other players are level-1 players, and hence believes that the distribution of play will be
b(q it(θ)), whereb(q it(θ)) ∈ ∆(A) puts equal probability on all best responses toq it(θ)

and zero probability on all inferior responses. The expected utility conditional on this belief
is y2(Ω

it; θ) ≡ Ub(q it(θ)). We can interprety2j (Ω
it; θ) as “level-2” evidence in favor of

actionj .
The third kind of evidence incorporates Nash equilibrium theory within the model. Letting

pNE denote a Nash equilibrium ofG, y3 ≡ UpNE provides yet another kind of evidence on
the available actions.

Finally, we represent behavior that is random in the first period and “follows the herd” in
subsequent periods. Following the herd does not mean exactly replicating the most recent
past, but rather following the past with perhaps some inertia as represented byq it(θ). We
then definey0(Ω

it; θ) = ln[q it(θ)], so when entered into the logistic equation (1) as the
log-propensity the resulting choice probabilities would beq it(θ).

So far we have defined four kinds of evidence:Y ≡ {y0, . . . , y3}. The next step is to
weigh this evidence and specify a probabilistic choice function. Letνk ≥ 0 denote a scalar
weight associated with evidenceyk. We define the weighted evidence vector:

ȳ(Ω it; ν, θ) ≡ Y (Ω it; θ)ν, (7)

whereν ≡ (ν0, . . . , ν3)
′.

There are many ways to go from such a weighted evidence measure to a probabilistic
choice function. We opt for the multinomial logit specification because of its computational
advantages when it comes to empirical estimation. The implicit assumption is that the player
assesses the weighted evidence with some error, and chooses the action which from his/her
perspective has the greatest net favorable evidence. Hence, the probability of choosing
actionj is

p̂j (Ω
it; ν, θ) ≡ exp[ȳj (Ω

it; ν, θ)]∑
` exp[ȳ`(Ω it; ν, θ)]

. (8)

Note that, given the five-dimensional parameter vector (ν, θ ), Eq. (8) defines a mapping
from Ω it to ∆(A), and hence is a behavior rule as defined abstractly above. By putting
zero weight on all but one rule, Eq. (8) defines an archetypal rule — one for each kind
of evidence corresponding to the underlying model of other players. Eq. (7) generates the
space of rules spanned by these archetypal rules.

For our population learning model, we simply drop the subscripti; that is, we use the
population evidence rather than the evidence from any one player’s individual experience.

2.5. Transference

Since this theory is about rules that use information about the game as input, we should be
able to predict behavior in a temporal sequence that involves a variety of games. For instance,
in our experiment one game is played for 15 periods and then another game is played for
15 periods. How is what is learned about the rules during the first “run” transferred to the
second run with the new game? A natural assumption would be that the log-propensities
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at the end of the first game are simply carried forward to the new game. Another extreme
assumption would be that the new game is perceived as a totally different situation so the
log-propensities revert to their initial state. We opt for a convex combination:

wi(ρ, 16) = (1 − τ)wi(ρ, 1) + τwi(ρ, 15+), (9)

where “15+” indicates the update after period 15 of the first run, andτ is the transference
parameter. (For the population version, we simply drop the superscripti.) If τ = 0, there is
no transference, so period 16 has the same initial log-propensity as period 1; and ifτ = 1,
there is complete transference, so the first period of the second run has the log-propensity that
would prevail if it were period 16 of the first run (with no change of game). This specification
extends the theory to any number of runs with different games without requiring additional
parameters (beyondτ ).

3. Experimental design and data

An experiment session consisted of two runs of 15 periods each. In the first run, one of
the four games was played for 15 periods, and in the second run, another game was played
for 15 periods. A “mean matching” protocol was used, i.e. in each period a participant was
determined by his/her choice and the percentage distribution of the choices of all other
participants:Upt .

Four 5× 5 symmetric games were selected to challenge the theory. The payoffs for
the “row player” are shown in Fig. 1. The labels ne, b1, b2, wd, denote, respectively,
the unique symmetric Nash equilibrium strategy, the best-response to uniform (level-1),
the best response to the best response to uniform, and the choice of the SW95 “worldly”
type which best responds to a convex combination of the Nash prior and a noisy level-2
prior. The fifth strategy was either a dominated strategy (dm), or the maximax strategy
(mx). Payoffs are in probability units for a fixed prize of US$ 2.00 per game. The lotteries
that determined final monetary payoffs were conducted following the completion of both
runs.

Participants were seated at private computer terminals. Each game (“decision matrix”)
was presented on the computer screen. The participant made a choice of a pure strategy by
clicking on a row of the matrix, which then became highlighted. In addition, the participant
could enter a hypothesis about the choices of the other players, and cause the computer to
calculate hypothetical earnings, which were then displayed on the screen. Following each
period, each participant was shown the aggregate choices of the other participants for that
period. At any time by clicking the Record button, the participants could view a Record
screen with the history of the aggregate choices of the other participants for the entire
run.

The experiment consisted of four sessions of 22, 23, 24 and 22 participants. The par-
ticipants were predominately upper division undergraduate students and some graduate
students attending the first and second 1995 summer sessions at the University of Texas.
The average payment per participant was US$ 28.00 for a 2.5 h session. For a more complete
description of the experiment and the instructions, see S97a.
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Fig. 1. The four games.

4. Econometric specification

The theoretical model put forth to explain these choices involves nine parameters:β ≡
(ν̄0, ν̄1, ν̄2, ν̄3, θ̄ , σ, β0, β1, τ ). The first five parameters(ν̄0, . . . , ν̄3, θ̄ ) represent the mean
of the participant’s initial probabilityϕ, andσ is the standard deviation ofϕ; β0 andβ1 are
the learning parameters of Eqs. (2) and (3); andτ is the transference parameter in Eq. (9)
for the initial propensity of the second run.

Let si ≡ (si1, . . . , si30) ∈ {1, 2, 3, 4, 5}30 denote the choices of participanth for an
experiment, and letnt

j denote the number of participants who choose actionj in periodt .
For computational issues, see Appendix A.

4.1. The individual rule learning likelihood function

Lettingϕi(ν, θ, t |βi) denote the probability that participanti uses rule(ν, θ) in periodt

(with informationΩ it) given the nine-parameter vectorβi , the resulting probability thati
chose actionj is
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Table 1
Prediction of population choices

Session AL LA AIC

S627 −530.26 −545.14 −348.24
S629 −894.43 −891.71 −401.44
S810 −819.29 −822.43 −407.72
S815 −817.25 −803.17 −406.16

Total −3061.23 −3062.45 −1563.56

pit
j (βi) =

∫
R

p̂j (Ω
it; ν, θ)ϕi(ν, θ, t |βi) d(ν, θ). (10)

Then the joint probability ofsi conditional onβi is

P i(βi) ≡
30∏
t=1

pit
s it (β

i). (11)

S97a found the parameter valuesβ̂i that maximized log[P i(βi)] for each participant. Given
N participants, parameter estimatesβ ≡ (β1, . . . , βN), and lettingµ = 1/N in Eq. (5),
the predicted population distribution of choicej in periodt is

pt
j (β) ≡

∑
i

pit
j (βi)

N
. (12)

Given an urn filled with the participants,pt
j (β) is the probability that a randomly drawn

participant will choose actionj (assuming that theβi of any participant is not observable),
and hencept

j (β) is also the ex ante expected population distribution from random draws
from the urn with replacement. Then the predicted log-likelihood of the aggregated choices
{nt , t = 1, . . . , 30} is

AL (β) ≡
∑

t

∑
j

nt
j log[pt

j (β)]. (13)

It is important to recognize that
∑

i log[P i(βi)] 6= AL (β). 7 Therefore, the parameter

valuesβ̂i that maximize the former (the aggregate log-likelihood of the individual choices)
do not maximize the log-likelihood of the aggregated choices. The values of AL(β̂) based
on the parameter estimates of S97a are given in Table 1.

7 To see this, note that the former expression is equivalent to summing the log-likelihood of every individual’s
choice for every period, while the latter first sums the choice probabilities over all individuals period by period, and
then sums the logarithms of those aggregated choice probabilities. These two expressions yield identical values if
and only ifβi = β for all i.
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4.2. The population rule learning likelihood function

The rule propensities and law of motion is given by Section 2.2, with Eqs. (1′) and (3′) for
the population distributions. A single-parameter vectorβ applies to the population, yielding
population choice probabilities:

pt
j (β) =

∫
R

p̂j (Ω
t ; ν, θ)ϕ(ν, θ, t |β) d(ν, θ). (14)

Then the log of the joint probability of the aggregate data conditional onβ is

LA (β) ≡
∑

t

∑
j

nt
j log[pt

j (β)], (15)

analogous to Eq. (13).

5. Results

We estimated a homogeneous model (one nine-parameterβ vector for all four experi-
mental sessions), and we also estimated separate models for each session. The maximized
log-likelihood value for the homogeneous model is−3097.01, while the sum of the four
maximized log-likelihood values for the session models is−3062.45. Twice the difference
is distributed chi-square with 27 (3× 9) degrees of freedom and has aP -value of 10−5.
Therefore, we reject the hypothesis that the four sessions come from the same distribution.8

Henceforth, we will report on only disaggregated session-by-session results.

5.1. Population model versus aggregation of individual models

The session-by-session maximized log-likelihood values, LA(β), of the population rule
learning model are given in the third column of Table 1 next to the computed values of AL(β)
based on S97a. It is immediately apparent that there is little difference in the log-likelihood
values both by session and aggregated over all sessions. Therefore, the slight overall im-
provement in the aggregated log-likelihood provided by aggregation does not appear to be
worth the tremendous increase in the number of parameters:(9×91)− (9×4) = 783. One
method of comparing log-likelihood values of non-nested models with different number of
parameters is the Akaike’s information criteria, which is twice the log-likelihood difference
less twice the difference in the number of parameters. This measure is given in the fourth
column of Table 1. Clearly according to the AIC, the population model is far superior.
Modifications of the AIC that have been suggested in the literature (Bozdogan, 1987) only
serve to enhance the effect of the difference in the number of parameters. Therefore, we
have the following result.

8 The variance in the parameter estimates across sessions is consistent with the estimated variance in individual
parameter estimates found in S97a.
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Table 2
Coefficient estimates of population model

Parameter S627 S629 S810 S815

ν̄0 0.054+ 0.026 0.328∗∗ 0.529∗∗
ν̄1 0.096∗∗ 0.053∗∗ 0.106∗∗ 0.065∗∗
ν̄2 0.000 0.001 0.000 0.000
ν̄3 0.000 0.000 0.003 0.001
θ̄ 0.302∗∗ 0.733∗∗ 0.250∗∗ 0.468∗∗
σ 0.671 1.04 0.306 0.704
β0

a 0.878∗∗ 0.938∗∗ 0.814∗∗ 0.893
β1 0.060∗∗ 0.007 0.021∗∗ 0.011
τ 0.626∗∗ 1.00∗∗ 1.00∗∗ 0.000

a β0 is tested relative to 1.0.
+ Significant at 10% level.
∗∗ Significant at 1% level.

Result 1. Taking account of the difference in the number of parameters, the population rule
learning model is superior to aggregation of the individual rule learning model.9

The coefficient estimates of the population rule learning model are given in Table 2. It is
noteworthy that the initial weights on level-2 evidence (ν̄2) and Nash evidence (ν̄3) are in-
significant from zero, whereas the initial weight on level-1 evidence is highly significant.10

5.2. Rule learning hypotheses

Two parameters are critical to rule learning:β0 andβ1. If β0 = 1, then by virtue of law
of motion, Eq. (3′), the population distribution of rule propensities would be constant for all
periods. The test reported in Table 2 forβ0 is with respect toβ0 = 1, and this null hypothesis
is rejected for three out of the four experimental sessions. Aggregating all sessions, the null
hypothesis has aP -value less than 10−7. Therefore, we have the following result.

Result 2. We strongly reject the hypothesis of constant population rule propensities.

While rule propensities apparently change over time, they respond to the performance
evaluation function if and only ifβ1 is significantly positive. From Table 2, it can be seen
that the null hypothesis ofβ1 = 0 is rejected for two of the four sessions. Aggregating all

9 Cheung and Friedman (1997) find that a representative agent model does not fit the data as well as individual
agent models. Specifically, they reject the hypothesis thatβi = β for all i when maximizing the sum of individual
log-likelihoods:

∑
i log[P i(βi)]. The same hypothesis is also rejected on our dataset (S97a). These tests presume

that we can identify an individual participanti with a parameter vectorβi , which we can do ex post. However,
when considering the predictive power of a model, the best we can hope for ex ante is to know the distribution of
the parameter vectors in the participant population. Hence, the appropriate ex ante log-likelihood measure is that
given by Eq. (13), which is derived from the urn model. Accordingly, Result 1 says that the population diversity
that is implicit in the population rule learning model is as good as the diversity captured by an urn containing
unobservable individual parameter estimates.
10 Note thatσ was not tested, since the log-propensities are unbounded forσ = 0.
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Fig. 2. Plot ofϕ mode for S627.

sessions, the null hypothesis has aP -value less than 10−7. Therefore, we have the following
result.

Result 3. We reject the hypothesis of no rule learning.

If we had only two dimensions or only a small number of rules, then we could easily
present a potentially revealing plot of rule propensitiesϕ over time. However, with five
dimensions, it is a challenge to present a picture of how the probability distribution over
rules (ϕ) changes over time. For each period we identified the “dominant mode” ofϕ as
follows. We found all the rules (ν, θ ) for whichϕ(ν, θ, t) was within 50% of the maximum
ϕ value for that period, and computed the average,

∫
(ν, θ) dϕ(ν, θ, t)/

∫
1dϕ(ν, θ, t), over

this neighborhood of the dominant mode; call this (V t
0, V t

1, V t
2, V t

3, Θt ) for periodt . Figs. 2
and 3 display these mean evidence weights for the dominant mode as a function of time
for the two sessions for whichβ1 was statistically significant. For S627, the transference
parameter (τ ) is essentially zero, so theVk values revert to the initial values at the beginning
of the second run; while for S810,τ ≈ 1, so theVk values are constant between runs.
Note that an increase of one unit on the log scale means a four-fold increase in the weight
on the corresponding evidence. Hence, these figures reveal substantial changes inϕ due
to rule learning, especially for the level-2 and Nash rules. In Fig. 2, the weight on level-l
evidence increases throughout the first run and during the first half of the second run, when
the weight on level-2 and Nash evidences increases dramatically. In Fig. 3, little happens
during the first 10 periods, but then the weights on level-2 and Nash evidences steadily
increase.
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Fig. 3. Plot ofϕ mode for S810.

5.3. Nash and Cournot hypotheses

As a benchmark for the population rule learning model, we can consider the Nash
equilibrium model. Of course, in its pure form, it is incompatible with the data because
participants often make non-Nash choices. It is more interesting to consider the Nash
model extended to include errors. Observe that by settingνk = 0, ∀k 6= 3, we have
a Nash-based probabilistic choice function, with the interpretation ofν3 as the preci-
sion of the population’s expected utility calculation or as the inverse of the variance of
the population’s idiosyncratic considerations. The hypothesis that the population makes
its choices according to this error-prone Nash model is nested within our full popula-
tion model as a seven-parameter restriction. For each session, we found the (ν̄3, θ̄ ) values
that maximized the log-likelihood of the population choices. The sum over all sessions of
these maximizedL values was−4087.78. Compared with the totally random prediction
(−4393.75), this is a significant improvement (P < 10−126). However, the full popula-
tion model (−3062.44) is a very significant improvement over this Nash model (P <

10−417). In other words, even after adjusting for the large number of parameters, the popu-
lation rule learning model is astronomically more likely to have generated the data than the
Nash-based model. (For an enhanced Nash model with learning which is also rejected, see
Appendix A.)

Result 4. We strongly reject the implicit restrictions of the Nash model.

So-called Cournot dynamics have been popular because of their simplicity and explana-
tory power (e.g. Van Huyck et al., 1994; Cheung and Friedman, 1997; Friedman et al.,
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1995). In our context, Cournot dynamics is equivalent to zero weight on all evidence except
y1(Ω

t , θ), and no rule learning. Thus, the reduced model would have only two parameters
(ν̄1, θ̄ ). Maximizing the log-likelihood function with respect to these two parameters for
each session and summing over all four sessions, the aggregated log-likelihood decreases
to −3321.66. Compared to the no-rule-learning model, twice the difference is distributed
chi-square with 12 degrees of freedom and has aP -value less than 10−91. Compared to
the full population model, twice the difference is distributed chi-square with 28 degrees of
freedom and also has aP -value less than 10−91. Thus, we can strongly reject the Cournot
model in favor of both the no-rule-learning model (but other rules present) and the full
population model. (For an enhanced Cournot model with learning which is also rejected,
see Appendix A.)

Result 5. We strongly reject “Cournot dynamics”.11

6. Discussion

We draw two main conclusions from this study. First, when predicting the population
distribution of choices, our population rule learning model, with its implicit population
diversity, is as good as, and accounting for the number of parameters is much better than,
aggregation of individually estimated rule learning models. Hence, for the purposes of
developing a descriptive theory of population choices and a prescriptive theory of play,
we should focus on population rule learning models. For other learning models that can-
not represent population diversity, the adequacy of population models remains an open
question.

Second, rule learning is a statistically significant and important phenomena even when
focusing on population statistics, and is much better than one-rule learning dynamics such
as “Cournot dynamics” and Nash equilibrium learning.

Although we reported only session-by-session results, we performed all the tests of
Section 5 on a model with a single set of parameters for all session and found similar results.
In on going research, we are investigating an expanded rule learning model with constant
rules as well as the evidence-based rules, encompassing the major competing learning
theories from action reinforcement to sophisticated rule learning, thereby permitting nested
hypothesis testing. We will also explore parsimonious ways to capture heterogeneity within
the population — such as mixture models.

Uncited reference

Cheung and Friedman (1998).

11 Since fictitious play can be represented as a variation on Cournot dynamics with theθ parameter of Eq. (6)
being time-dependent (specifically,θ = 1/t), and sinceθ is allowed to vary over periods in our rule learning
model, we can also reject fictitious play.
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Appendix A

A.1. Computational methods and issues

To perform the integration required by Eqs. (10) and (14), we imposed a finite grid on
the (ν, θ )-space.12 As in S97a, we used the following logarithmic grid:νk ∈ {5/4j−1, j =
1, 6} ∪ {0}, andθ ∈ {j/6, j = 0, 6}. We also included the mean parameter (ν̄0, . . . , ν̄3, θ̄ )
as a variable point of the grid. Thus, the grid consisted of 75 + 1 = 16,808 points.13

Consistent with the grid scaling, we confined theν̄k estimates to the [0, 5] interval and the
θ̄ estimate to the [0, 1] interval.

The initial log-propensity function was specified as

w(ν, θ, 1) = −0.5‖(ν, θ) − (ν̄, θ̄ )‖2

σ 2
, (A.1)

where the distance‖(ν, θ)−(ν̄, θ̄ )‖ was measured on this logarithmic scale. That is, eachνk

was converted into a grid number, 1+ ln(5/νk)/ln(4), andθ was assigned grid value 1+6θ ;
then the distance between the five-dimensional vector of grid numbers was computed and
assigned to‖(ν, θ) − (ν̄, θ̄ )‖.

To find aβi that maximizes log[P i(βi)], we used a simulated annealing algorithm (Goffe
et al., 1994) for 13,502 function evaluations at high (but declining) temperatures, and then
fed the result into the Nelder and Mead (1965) algorithm on a Cray J90. We found the
simulated annealing algorithm to be effective in exploring the parameter space, but very
slow to converge once it settled in on a local maximum, while the latter algorithm converged
much faster locally. A typical estimation of the nine parameters for 91 participants took
about 200 J90 cpu hours. We used the same method to find aβ that maximizes LA(β).

A.2. A Nash model with learning

It may be objected that the Nash model of the text is inadequate because it does not permit
the population to learn the Nash equilibrium over time, even though behavior converged to
the Nash equilibrium in only two of the eight runs. Nonetheless, it might be informative to

12 Since a priori we do not know whether the distributionϕ in the second period is single- or multimodal, statistical
integration techniques are not appropriate.
13 Subsequent investigations with this dataset and a different grid produced qualitatively similar results, demon-
strating that the results reported here are not an artifact of the grid.
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consider the non-nested population model in which only the dimension of Nash-evidence
rules are present and the population can learn how much weight to put on the Nash prior (or
equivalently, can improve the accuracy of its expected utility calculations). We suppose that
Eq. (3) applies, but only with respect toν3. There are five parameters of this “Nash-learning”
model:σ , ν̄3,β0,β1, andτ . The aggregated log-likelihood for this model is−3903.28, which
is a substantial improvement over the above two-parameter Nash model, but still astronomi-
cally worse than the full population model. We can view this Nash-learning model as nested
in an encompassing model in which there are two sets of (σ , β0, β1, τ ) parameters, one
for theν3 dimension and one for the (ν0, ν1, ν2) dimensions combined. The five-parameter
Nash-learning model is equivalent to restricting the second set of (σ , β0, β1, τ ) parameters
to be (0, 1, 0,·), in addition to the restriction thatνk = 0 for k 6= 3. The 13-parameter
encompassing model was not estimated, but it must have a log-likelihood at least as large
as our full population model (−3062.45) since our full model is equivalent to restricting
the two sets of (σ , β0, β1, τ ) parameters to be the same. Then, twice the difference would
be distributed chi-square with 32 ((13− 5) × 4) degrees of freedom, and is at least as great
as 2× (3903.28− 3062.45), and therefore has aP -value less than 10−333.

A.3. A Cournot model with learning

It might be objected that the Cournot model of the text is too simplistic in that it does not
permit learning of theθ parameter of the forecasting equation nor learning how much weight
to put on they1 evidence. To answer this criticism, we estimated a non-nested model in
which only they1-evidence dimension of rules are present, and the population can adjustθ

andν1 in response to reinforcement evidence according to Eq. (3). There are six parameters
in this “enhanced Cournot” model:ν̄1, θ̄ , σ , β0, β1, andτ . The aggregated log-likelihood
for this enhanced Cournot model is−3204.28, which is a substantial improvement over the
above two-parameter Cournot model, but still astronomically worse than the full population
model. We can view this enhanced model as nested in an encompassing model in which
there are two sets of (σ , β0, β1, τ ) parameters, one for theν1 dimension and one for the (ν0,
ν2, ν3) dimensions combined. Our six-parameter enhanced Cournot model is equivalent to
restricting the second set of (σ , β0, β1, τ ) parameters to be (0, 1, 0,·), in addition to the
restriction thatνk = 0 fork 6= 1. The 13-parameter encompassing model was not estimated,
but it must have a log-likelihood at least as large as our full model (−3062.45) since our
full model is equivalent to restricting the two sets of (σ , β0, β1, τ ) parameters to be the
same. Then, twice the difference would be distributed chi-square with ((13− 6) × 4) 28
degrees of freedom, and is at least as great as 2× (3204.68− 3062.45), and therefore has
aP -value less than 10−43.
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