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ABSTRACT

Psychologically-based rules are important in human behavior and have the potential of

explaining equilibrium selection and separatrix crossings to a payoff dominant equilibrium in

coordination games.  We show how Rule Learning theory can easily accommodate behavioral

rules like aspiration-based experimentation and reciprocity-based cooperation, and how to test

for the significance of additional rules.  We confront this enhanced Rule Learning model with

experimental data on games with multiple equilibria and separatrix-crossing behavior.

Maximum likelihood results do not support aspiration-based experimentation or anticipated

reciprocity as significant explanatory factors, but does support a small propensity for non-

aspiration-based experimentation by random belief and non-reciprocity-based cooperation.



2

1.  Introduction.

In recent years, the field of learning in games has evolved considerably, with recent

models able to make robust predictions in a variety of interesting games.  Recent examples in the

reinforcement learning arena include Roth and Erev (1995), Erev and Roth (1998), and Sarin and

Vahid (1999).  In belief learning, Fudenberg and Levine (1998) and Cheung and Friedman

(1997, 1998) provide some comprehensive reviews.  In hybrid models, Camerer and Ho (1997,

1998, 1999) have led the field.  These models, though different in structure, are based on players

adjusting, with noise and inertia, in the direction of the best response to past observations.  In

that sense, players’ sophistication is fairly limited.  When hypotheses are permitted (in belief and

hybrid models), players’ hypotheses on others’ frequencies of choice are limited to a weighted

average of others’ past frequencies.  In reality, players are far more sophisticated and are able to

reason iteratively, as Nagel (1995), Stahl (1996) and Ho, Camerer and Weigelt (1998) have

shown.  For example, a sophisticated player might believe that other players will tend to choose a

best reply to the historical trend (which could be different from a weighted average of others’

past frequencies), and hence choose a best reply to this belief.  Action reinforcement dynamics

cannot capture such behavior, since the behavior is not simply the tendency to choose an action.

Rather the behavior is a function (or behavioral rule) that maps game information and histories

into available actions.

Stahl’s (1999; 2000a,b; 2001) Rule Learning theory assumes that players probabilistically

select behavioral rules and that the propensities to use specific rules are guided by the Law of

Effect: the propensity of rules that perform better increase over time and vice versa.  Precursors

of this approach are Newell, Shaw and Simon (1958).  To operationalize the theory, a class of

rules is assumed which includes the sophisticated rule mentioned above (see Section 2.3 for

details).  While this specification of the Rule Learning theory has been remarkably successful

empirically (compared to other learning models), a shortcoming is that all the rules are either a

form of trending or "myopically rational" in the sense of being (perhaps noisy) best-replies to a

current belief.  We say this is a shortcoming because a growing number of laboratory

experiments have documented that individuals deviate systematically from myopic self-interest

behavior when there are possible future gains from influencing others. Specifically, such non-

myopic actions may be motivated by expectations of future reciprocity by others (e.g., Fehr et al,
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1998; Gneezy, Guth, and Verboven, 200l; Engle-Warnick and Slonim, 2001), attempts to teach

others (e.g., Camerer et al., 2000), or attempts to signal intended future actions in coordination

games (e.g., Cooper et al., 1993).

In one coordination game example presented here, players appear to be sacrificing payoff

to choose a suboptimal action when the best response is not socially optimal. Figure 1 depicts

this example. In this symmetric coordination game, the experimental subjects tend towards a

pareto inferior equilibrium (A) and then “miraculously” reverse direction and converge to the

payoff-dominant equilibrium (B).  The matrix of Figure 1 gives the row player’s payoffs, and the

triangular graph depicts the aggregate choice frequencies of actions A and B for an experiment

session.  The dotted line depicts the "separatrix" between the area for which B is the best-reply

(upper area) and the area for which A is the best reply; C is a dominated action.  The experiment

session had 25 subjects mean-matched for 12 periods, with population feedback after each period

(see Section 4 for details).  The first period is represented by the dot labeled with a "1", which

lies in A's best-reply area.  In the second and third periods (labeled "2" and "3" respectively), the

choice frequencies move strongly in the direction of the best reply.  Then in period 4 there is a

surprising reversal of direction, followed in period 5 by the crossing to action B’s best-reply area

and eventual convergence to the payoff-dominant equilibrium (B).  This "separatrix-crossing"

phenomenon is robust (9 out of 20 sessions) and is incompatible with myopic rationality.

Thus, we have compelling reasons to develop better models that go beyond trending and

myopically rational behavior to include other psychologically based modes of behavior.  The

primary purpose of this paper is to show how the Rule Learning theory can easily incorporate

diverse psychologically based rules and how to test for the significance of additional rules.

Having motivated the need with the example in Figure 1, we will also use this example to

motivate the behavioral rules that we will use to achieve our purpose.  However, we will leave

the mystery of the separatrix crossing unresolved, and we will not answer the quest for the "best"

class of rules since that is not our primary goal.  Nonetheless, the methodology we develop is a

promising approach for future research.

Binmore and Samuelson (1997) offered a theoretical explanation for separatrix-crossing

behavior based on aspirations and experimentation.  Applied to the above example, players begin

with aspirations of payoffs, which during the first three periods depicted in Figure 1 are not
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fulfilled, inducing the players to “experiment” with other strategies.  If experimentation leads to

enough B (but not C) choices, then the separatrix can be crossed.

Another possible explanation of separatrix crossings is that some players make short-term

sacrifices to "teach" others to coordinate on the payoff-dominant equilibrium (an interesting

example of “teaching behavior” in repeated games is given in Camerer, Ho, and Chong, 2000).

We could think about these players as anticipating positive reciprocity from the other players.  In

general models of reciprocity (e.g., Rabin, 1993; Dufwenberg and Kirchsteiger, 1998), a costly

action by one party which is favorable to another is due to intentional actions by the other party

perceived to be favorable (positive reciprocity).  Similarly, an unfavorable action is chosen in

response to intentional actions perceived to be unfavorable (negative reciprocity).  Though these

responses may be costly for the individual, they could serve to enforce social norms, which may

ultimately result in everyone being better off (Hoffman, McCabe, and Smith 1998, Fehr and

Gächter 1998, Brandts and Charness, 1999).

We can incorporate Binmore and Samuelson's insight into the Rule Learning theory by

introducing an experimentation rule whose propensity is sensitive to the difference between

player aspirations and actual payoffs.  Players start with an initial aspiration level and an initial

propensity toward experimentation (loosely some random deviation from myopic best-reply

behavior), and if the actual payoffs fall short of the aspiration level, the propensity to experiment

increases, and vice versa.  Allowing the aspiration level to be updated gradually could then

explain separatrix-crossing behavior.

Alternatively, we can incorporate anticipated reciprocity into the Rule Learning theory by

introducing a cooperative rule (in the current examples, to choose the symmetric payoff

dominant action), an initial propensity to “cooperate” (i.e., use this rule), and an initial

anticipation of reciprocity (the payoff that would be obtained if everyone cooperates).  The

anticipated reciprocity payoff would be updated only gradually, thereby representing patience in

waiting for others to reciprocate.  Positive reciprocal behavior by others would increase the

propensity to cooperative, but if others failed to reciprocate, eventually the propensity to

cooperate would plummet.  We also consider an alternative modeling of anticipated reciprocity

in the form of a tit-for-tat rule.

Section 2 presents the basic Rule Learning model and Section 3 presents the three

enhancements.  Section 4 describes the experimental data we use to test the enhanced model - the
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experiment design, the games, and the rationale behind them.  Section 5 confronts the enhanced

Rule Learning model with the experimental data, and analyzes the contribution of these

enhancements to explaining the data.  Section 6 concludes.

2.  The Rule Learning Framework.

    2.1.  The Game Environment.

Consider a finite, symmetric, two-player game G ≡ (N,A,U) in normal form, where N ≡

{1,2} is the set of players, A ≡ {1, ... , J} is the set of actions available to each player, and U is

the J×J matrix of expected utility payoffs for the row player, and U', the transpose of U, is the

payoff matrix for the column player.  For notational convenience, let p0 ≡ (1/J, ... , 1/J)' denote

the uniform distribution over A.

We focus on single population situations in which each player is matched in every period

with every other player; hence, the payoff relevant statistic for any given player is the probability

distribution of the choices of the population, and this information is available to the players.  To

this end, pt will denote the empirical frequency of the all players’ actions in period t.  It is also

convenient to define ht ≡ {p0,..., pt-1} as the history of all players' choices up to period t with the

novelty that p0 is substituted for the null history.  Thus, the information available to a

representative player at the beginning of period t is Ωt ≡ (G,ht).

    2.2.  Behavioral Rules and the Rule Learning Dynamic.

A behavioral rule is a mapping from information Ωt to ∆(A), the set of probability

measures on the actions A.  For the purposes of presenting the abstract model, let ρ ∈ R denote a

generic behavioral rule in a space of behavioral rules R;  ρ(Ωt) is the mixed strategy generated by

rule ρ given information Ωt.

The second element in the model is a probability measure over the rules: ϕ(ρ,t) denotes

the probability of using rule ρ in period t.  Because of the non-negativity restriction on

probability measures, it is more convenient to specify the learning dynamics in terms of a

transformation of ϕ that is unrestricted in sign.  To this end, we define w(ρ,t) as the log-

propensity to use rule ρ in period t, such that



6

                                              ϕ(ρ,t)  ≡  exp(w(ρ,t)/[∫exp(w(z,t)dz] .                                             (1)

Given a space of behavioral rules R and probabilities ϕ, the induced probability

distribution over actions for period t is

           p(t) ≡ ∫R
ρ(Ωt)dϕ(ρ,t) .                      (2)

In other words, pj(t) is the probability that action j will be chosen in period t, and is obtained by

integrating the probability of j for each rule, ρj(Ωt), with respect to the probability distribution

over rules, ϕ(ρ,t).  Computing this integral is the major computational burden of this model.

The third element of the model is the equation of motion.  The Law of Effect states that

rules which perform well are more likely to be used in the future.  This law is captured by the

following dynamic on log-propensities:

               w(ρ,t+1) = β0w(ρ,t) + g(ρ,Ωt+1) , for t ≥ 1 ,               (3)

where g() is the reinforcement function for rule ρ conditional on information Ωt+1 = (G,ht+1), and

β0 ∈ (0,1] is an inertia parameter.  We specify g(ρ,Ωt+1) as the rescaled expected utility that rule

ρ would have generated in period t:

                           g(ρ,Ωt+1) = β1ρ(Ωt)'Upt,                         (4)

where β1 > 0 is a scaling parameter.

While the ex ante rule propensities ϕ(ρ,t) are the same for all individuals, diversity in the

population is generated by independent draws from ϕ(ρ,t) for each individual in each period.

Since we are specifying a model of population averages rather than individual responses, the

reinforcement function represents the cumulated effects of experience throughout the population.

Given a space of rules R and initial conditions w(ρ,1), the law of motion, eq(3),

completely determines the behavior of the system for all t > 1.  The remaining operational

questions are (1) how to specify R, and (2) how to specify w(ρ,1).
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An attractive feature of this general model is that it encompasses a wide variety of

learning theories.  For instance, to obtain replicator dynamics, we can simply let R be the set of J

constant rules that always choose one unique action in A for all information states.  Fictitious

play and Cournot dynamics can be seen as very special cases in which R is a singleton rule

which chooses a (possibly noisy) best-response to a belief that is a deterministic function of the

history of play1.  Moreover, the general model can include these constant rules, best-response

rules and other rules.

    2.3.  The Family of Evidence-Based Rules.

Our approach to specifying the space of rules is to specify a finite number of empirically

relevant discrete rules that can be combined to span a much larger space of rules.2  In S99 and

S00a, the family of "evidence-based" rules was introduced as an extension of the Stahl-Wilson

(1995) [hereafter SW95] level-n rules.  Evidence-based rules are derived from the notion that a

player considers evidence for and against the available actions and tends to choose the action that

has the most net favorable evidence based on the available information.  Further, evidence is

generated from three archetypal "theories of mind" (i.e. models of other players).

The first kind of evidence comes from a "null" model of the other players.  The null

model provides no reason for the other players to choose any particular strategy, so for the first

period of play, by virtue of insufficient reason, the belief is that all strategies are equally likely.

The expected utility payoff to each available action given the null model is y1(Ω1) ≡ Up0.  We

interpret y1j as “evidence” in favor of action j stemming from the null model and no prior history.

For later periods (t > 1), the players have empirical data about the past choices of the

other players.  It is reasonable for a player to use simple distributed-lag forecasting: (1-θ)p0 + θp1

for period 2 with θ ∈ [0,1].  Letting qt(θ) denote the forecast for period t and defining qt(θ) ≡ p0,

the following forecasting equation applies for all t ≥ 1:

               qt(θ) ≡  (1-θ)qt-1(θ) + θ pt-1 .                        (5)

                                                       
1 In fictitious play, the belief is the unweighted empirical frequency of observed choices, and in Cournot dynamics
the belief is the most recent observed empirical frequency.
2 Alternative approaches could use the "production rules" of ACT-R (Anderson, 1993), or "fast and frugal
heuristics" (Gigernezer, et. al.,1999).
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The expected utility payoff given this belief is y1(Ωt;θ) ≡ Uqt(θ).  We can interpret y1j(Ωt;θ) as

"level-1" evidence in favor of action j stemming from the null model and history ht.

The second kind of evidence is based on the SW95 "level-2" player who believes all

other players are level-1 players, and hence believes that the distribution of play will be b(qt(θ)),

where b(qt(θ)) ∈ ∆(A) puts equal probability on all best responses to qt(θ) and zero probability

on all inferior responses.  This is a second order theory of mind in which other minds are

believed to be first order (i.e. level 1).  Indeed, humans may have brain structures for this kind of

representation (Churchland and Sejnowski, 1992).  The expected utility conditional on this belief

is  y2(Ωt;θ) ≡ Ub(qt(θ)).  We can interpret y2j(Ωt;θ) as "level-2" evidence in favor of action j.

The third theory of mind is Nash equilibrium theory.  Letting pNE denote a Nash

equilibrium of G, y3 ≡ UpNE provides a third kind of evidence on the available actions.  For

games with multiple NE, the evidence for each NE is equally weighted.3

So far we have defined three kinds of evidence: Y ≡ {y1,...,y3}.  The next step is to weigh

this evidence and specify a probabilistic choice function.  Let νk ≥ 0 denote a scalar weight

associated with evidence yk.  We define the weighted evidence vector:

      y (Ωt;ν,θ) ≡ Y(Ωt;θ)ν ,                        (6)

where ν ≡ (ν1, ..., ν3)'.

There are many ways to go from such a weighted evidence measure to a probabilistic

choice function.  We opt for the multinomial logit specification because of its computational

advantages when it comes to empirical estimation.  The implicit assumption is that the player

assesses the weighted evidence with some error, and chooses the action that from his/her

perspective has the greatest net favorable evidence.  Hence, the probability of choosing action j

is

        jp̂ (Ωt;ν,θ)  ≡  exp[y j(Ωt;ν,θ)]/ ∑"
exp[

"
y (Ωt;ν,θ)] .            (7)

                                                       
3 See Haruvy and Stahl (1999).
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Note that, given the four-dimensional parameter vector (ν,θ), eq(7) defines a mapping from Ωt to

∆(A), and hence pˆ ( ;ν,θ) is a behavioral rule as defined abstractly above.  By putting zero

weight on all but one kind of evidence, eq(7) defines an archetypal rule - one for each kind of

evidence corresponding to the underlying model of other players.  The four-dimensional

parameter vector (ν,θ), generates the space of rules spanned by these archetypal rules.  To show

the behavioral effect of various ν values, Table 1 gives the predicted initial-period choice

frequencies for games 13 and 16 for several values of (ν1, ν2, ν3).

Next, we represent behavior that is random in the first period and "follows the herd" in

subsequent periods.  Following the herd does not mean exactly replicating the most recent past,

but rather following the past with inertia as represented by qt(θ).  Hence, eq(5) represents herd

behavior as well as the beliefs of level-1 types.

Finally, we allow for uniform trembles by introducing the uniformly random rule.  Thus,

the base model consists of a four-dimensional space of evidence-based rules (ν,θ), a herd rule

characterized by θ, and uniform trembles.

    2.4.  The Initial Propensity Distribution.

Letting δh denote the initial probability of the herd rule, and letting ε denote the initial

probability of the trembles, we set w(ρherd,1) = ln(δh) and w(ρtremble,1) = ln(ε).  The initial log-

propensity function  for the evidence-based rules is specified as

                  w(ν,θ,1) ≡ -0.5 A||(ν,θ)-( θν , )||2/σ2 ,                (8)

where ||(ν,θ)- ( θν , )|| denotes the distance between rule (ν,θ) and the mean of the distribution

( θν , ), and A is determined by the requirement that eq(1) integrated over the space of evidence-

based rules is exactly 1-δh-ε.  Hence, the initial propensity over the evidence-based rules is

essentially a normal distribution with mean (θν , ) and standard deviation σ.

    2.5.  Transference.

Since this theory is about rules that use game information as input, we should be able to

predict behavior in a temporal sequence that involves a variety of games.  For instance, suppose
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an experiment consists of one run with one game for T periods, followed by a second run with

another game for T periods.  How is what is learned about the rules during the first run

transferred to the second run with the new game?  A natural assumption would be that the log-

propensities at the end of the first game are simply carried forward to the new game.  Another

extreme assumption would be that the new game is perceived as a totally different situation so

the log-propensities revert to their initial state.  We opt for a convex combination:

                     w(ρ,T+1) = (1-τ)w(ρ,1) + τw(ρ,T+) ,               (9)

where "T+" indicates the update after period T of the first run, and τ is the transference

parameter.  If  τ = 0, there is no transference, so period T+1 has the same initial log-propensity as

period 1; and if τ = 1, there is complete transference, so the first period of the second run has the

log-propensity that would prevail if it were period T+1 of the first run (with no change of game).

This specification extends the model to any number of runs with different games without

requiring additional parameters.

    2.6.  The Likelihood Function.

The theoretical model involves 10 parameters: β ≡ )( 10h321 τββεδσθννν ,,,,,,,,, .  The

first four parameters )( 321 θννν ,,,  represent the mean of the participant's initial propensity

w(ρ, 1) over the evidence-based rules, and σ is the standard deviation of that propensity; the next

two parameters ),εδh(  are the initial propensities of the herd and tremble rules respectively; β0

and β1 are the learning parameters of eq(3-4); and τ is the transference parameter in eq(9) for the

initial propensity of the subsequent runs.  Substituting eq(7) into eq(2), the rule propensities and

law of motion yield population choice probabilities:

                   jp (t|β) = ∫R ˆ jp (Ωt;ν,θ)ϕ(ν,θ,t|β)d(ν,θ) .                     (10)
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To compute this integral, a grid was placed on the (ν,θ)-space of rules (see Appendix A of S01

for details).  Let t
jn  denote the number of participants who choose action j in period t.  Then the

log of the joint probability of the data conditional on β is

                       LL(β) ≡ jt j
t
j [p n∑ ∑ log (t|β)] .                 (11)

To find a β vector that maximizes LL(β), we use a simulated annealing algorithm [Goffe

(1994)] for high but declining temperatures, and then feed the result into the Nelder and Mead

(1965) algorithm.  The simulated annealing algorithm is effective in exploring the parameter

space and finding neighborhoods of global maxima but very slow to converge, while the latter

algorithm converges much faster.

3.  Enhancements to the Rule Learning Model

    3.1.  Aspiration-Based Experimentation.

Two components of an aspiration-based experimentation rule are the experimentation act

and the aspiration level.  We let px(t) denote the probability distribution of the experimentation

act in period t. Two obvious candidates for px(t) are the uniform distribution p0 for

experimentation by random choice, and the recent past pt-1 for experiment by imitation.  The

third alternative we will consider is experimentation by random beliefs in which px(t) is the

proportion of the probability simplex for which each choice is the best response.  Such choice

probabilities would arise from beliefs that are uniformly distributed over the probability simplex.

Let ax(t) denote the aspiration level for period t.  We assume an adaptive expectations

dynamic for the aspiration level:

ax(t+1)  = θ2 a
x(t)  + (1-θ2) p

x(t)'Upt      (12)

with initial condition ax(1).  With 0 < θ2 < 1, the aspiration level will adjust gradually to the

actual expected utility that the experimentation act would have generated each period.  If initial
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play is diverse and the experimentation act is diverse, then px(t)'Upt will be highly correlated

with the population average payoff.  Hence, if the latter is much less than the initial aspiration

level and if θ2 < 1, then the aspiration level will gradually decline but remain above the

population average payoff, and this positive difference will increase the likelihood that the

experimentation rule will be used.  Conversely, if the population average payoff is higher than

the initial aspiration level, then the propensity to experiment will decline (“don't rock the boat”).

The Rule Learning framework can represent this dependence of the propensity to

experiment on the aspiration level by using β1a
x(t+1) as the reinforcement, g(ρx,Ωt+1), for the

experimentation rule in eq(3).  If initial aspirations are disappointed, then the log-propensity to

experiment will increase, and vice versa.  Asymptotically, as long as θ2 < 1, eq(12) has the

property that the long-run propensity to use the experimentation act, px(t), will depend on the

actual expected payoff from that act, since initial aspirations are geometrically discounted.

Conversely, the larger θ2, the longer will be the effect of the initial aspiration level.  For the

game in Figure 1, simulations of Rule Learning with an initial aspiration level of 50 or higher

and a value of θ2 > 0.9  produce separatrix crossings.

In addition to specification of px(t), we need to specify an initial aspiration level ax(1),

and an initial propensity, δx, to experiment [i.e. ϕ(ρx,1) = δx].  It is natural to set ax(1) equal to

the mean of the range of payoffs in the game: [maxjk Ujk - minjk Ujk] / 2.  We let δx be a free

parameter to be estimated from the data.  We further assume that the transference equation

applies to the aspiration level, so

                     ax(T+1) = (1-τ)ax(1) + τax(T+) .              (9’)

While this model of aspiration-based experimentation will suffice to illustrate the

richness of the Rule Learning theory, it does not exhaust all possible models of aspiration-based

experimentation - which would go beyond the purpose of this paper.

    3.2.  Reciprocity-Based Cooperation.

For the class of symmetric normal-form games, we define the symmetric cooperative

action as the action with the largest “diagonal” payoff, and we restrict attention to the subclass

with a unique symmetric cooperative action.  Let pc denote the degenerate probability



13

distribution that puts unit mass on this cooperative action; we will refer to this as the cooperative

rule, ρc.  But why would a rational player choose the cooperative rule?

A rational player who believes that almost everyone else will select the cooperative

action would anticipate a payoff equal to the maximum diagonal payoff if he/she chooses the

cooperative action.  Then, if the cooperative action is a best response to this belief (i.e. if it is a

payoff-dominant Nash equilibrium), the rational player will choose the cooperative action.  If the

cooperative action is not a best-reply to itself, a myopically rational player will not choose it, but

a forward-looking rational player could still choose it if she/he believes that others will

reciprocate leading to a higher payoff than the path that would follow from myopic best-replies.

If others do not cooperate at the start, the realized payoff to cooperation will be much less than

anticipated, and so the player's belief about the likelihood of reciprocation may decline

(especially if the player is impatient).

Let θ2 denote the level of patience of such a player, so the anticipated payoff from

cooperation, ac(t), (via future reciprocity) follows the simple adaptive expectations dynamic:

ac(t+1) = θ2a
c(t)  (1-θ2)p

c'Upt       (13)

where ac(1) = pc'Upc, the largest diagonal payoff.  This initial anticipated payoff is geometrically

discounted over time, so provided θ2 < 1, the anticipated payoff from cooperation will tend

towards a geometrically weighted average of actual expected payoffs to cooperation.  The larger

θ2, the slower the adjustment, so if the propensity to cooperative is positively correlated with

ac(t), cooperative efforts could persist despite the lack of reciprocation.

The Rule Learning framework can represent this dependence of the propensity to

cooperate on anticipated reciprocity by using β1a
c(t+1) as the reinforcement, g(ρc,Ωt+1), for the

cooperative rule in eq(3).  When θ2 = 0, we would have a stubborn, irrational cooperative rule,

but otherwise, the propensity to cooperate will depend on the difference between the anticipated

payoff and the actual expected payoffs of alternative rules.  When cooperation is reciprocated, so

its payoff stays high relative to alternative rules (which recommend different actions), then the

propensity to cooperate will increase, and vice versa.

We further assume that the transference equation applies to the anticipated payoff, so
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                     ac(T+1) = (1-τ) ac(1) + τ ac(T+) .             (9")

Finally, we let δc denote the initial propensity to cooperate [i.e. ϕ(ρc,1) = δc].

While this model of reciprocity-based cooperation will suffice to illustrate the richness of

the Rule Learning theory, it does not exhaust all possible models of reciprocity-based

cooperation - which would go beyond the purpose of this paper.  Nonetheless, we consider one

more model in the next section.

    3.3.  A Tit-for-Tat Rule

Tit-for-tat (TFT) behavior gained prominence following Axelrod's (1981, 1984)

experimental Prisoner's Dilemma tournaments in which TFT emerged as the winning strategy,

and Kreps, et. al.’s (1982) rational underpinning of TFT behavior in the finitely repeated

Prisoner's Dilemma with incomplete information.  In a two-player Prisoner's Dilemma, the TFT

rule specifies cooperation in the first period, and then mimicking the most recent strategy of

one’s opponent thereafter. The TFT rule we examine here begins cooperatively and thereafter

cooperates if a threshold number of players have cooperated in the most recent period; otherwise

it chooses a best reply to the recent period.  Formally, let fc(t) denote the fraction of the

population that cooperated in period t, and let c ∈ (0,1) denote the threshold.  Then, we define

the TFT probability of cooperating in period t+1 as

      0.5 [fc(t)/c]γ,    if  fc(t) ≤ c  ,
ψ(t+1;fc(t),c)  ≡ (14)

      1 - 0.5{[1-fc(t)]/[1-c]} γ,  if fc(t) > c ,

where γ ≥ 1 is a precision parameter to be estimated along with c.  This probability has the

property that (i) it is 0 when fc(t) = 0, (ii) it is 1 when fc(t) = 1, (iii) it is 0.5 when fc(t) = c, and

(iv) it is S-shaped and monotonically increasing in fc(t).  For large values of γ, the probability

function is close to a step function at fc(t) = c.  When c ≈ 0, the cooperative action is chosen for

almost all realizations of fc(t), while when c ≈ 1, the non-cooperative best-reply action is chosen

for almost all realizations of fc(t).
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From eq(14), it is straightforward to define the TFT behavioral rule ρTFT(Ωt+1) which

plays the cooperative action with probability ψ(t+1;fc(t),c) and plays pt with probability 1-

ψ(t+1;fc(t),c).  In accordance with eq(4), the reinforcement function g(ρTFT, Ωt+1) =

β1ρTFT(Ωt)'Upt.  To complete the rule learning model with this TFT rule, we specify the initial

propensity to use the TFT rule as δTFT .

4.  The Experimental Data.

An experiment session consisted of 25 players playing two runs of 12 periods each.  In

the first run, a single 3×3 symmetric game was played for 12 periods, and in the second run, a

different 3×3 symmetric game was played for 12 periods.  We conducted 25 sessions, so

altogether we have 625 different participants, all inexperienced upper division undergraduate or

non-economics graduate students.  Two sessions were conducted at Texas A&M University, and

the rest were conducted at the University of Texas.

A “mean-matching” protocol was used.  In each period, a participant’s token payoff was

determined by her choice and the percentage distribution of the choices of all other participants,

p(t), as follows:  The row of the payoff matrix corresponding to the participant’s choice was

multiplied by the vector of choice distribution of the other participants.  Token payoffs were in

probability units for a fixed prize of $2.00 per period.  In other words, the token payoff for each

period gave the percentage chance of winning $2 for that period.  The lotteries that determined

final monetary payoffs were conducted following the completion of both runs using dice.

Specifically, a random number uniformly distributed on [00.0, 99.9] was generated by the throw

of three ten-sided dice.  A player won $2.00 if and only if his token payoff exceeded his

generated dice number.  Payment was made in cash immediately following each session.

Participants were seated at private computer terminals separated so that no participant

could observe the choices of other participants.  The relevant game, or decision matrix, was

presented on the computer screen.  Each participant could make a choice by clicking the mouse

button on any row of the matrix, which then became highlighted.  In addition, each participant

could make hypotheses about the choices of the other players.  An on-screen calculator would

then calculate and display the hypothetical payoffs to each available action given each

hypothesis.  Participants were allowed to make as many hypothetical calculations and choice
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revisions as time permitted.  Following each time period, each participant was shown the

aggregate choices of all other participants and could view a record screen with the history of the

aggregate choices of other participants for the entire run.

We select 10 games (see Figure 2) from those investigated in Haruvy and Stahl (1999;

henceforth, HS99), with properties that make them ideal for a thorough study of learning

dynamics.  These are games 1, 4, 9, 12, 13, 14, 16, 18 and 19 of HS99.  In addition, we have a

3×3 version of a 5×5 game used in S99, for which cooperative behavior seemed to persist

(labeled game 21).

What makes these games ideal?  We begin by noting that games 1, 4, 13, 14, 16, and 19

are characterized by multiple equilibria which are Pareto ranked.  The selection principles of

payoff dominance, risk dominance, and security do not all coincide in any of these six games,

and no pair of principles coincides in all of these six games.  Most importantly, the payoff

dominant equilibrium action never coincides with the level-1 action of Stahl and Wilson (1994,

1995).  This is important given the prediction by HS99 that level-1 is a heavy component in the

determination of initial conditions.  According to the predictions generated by the HS99 model,

initial conditions in these six games will generally fall in a basin of attraction (for popular

models of adaptive dynamics) inconsistent with the payoff-dominant choice.

Games 1, 14, and 19 begin with initial conditions far from uniform and very little

movement is observed thereafter, with the exception of one run of game 14, where a significant

proportion of the group goes against their best response to cross the separatrix towards the payoff

dominant Nash equilibrium.  Game 13 has a long dynamic path from initial conditions to the

final outcome.  The final period outcomes of Game 16 are almost equally split between the two

equilibria, although the initial conditions fall usually in the non-payoff-dominant basin, hence

resulting in separatrix crossings.  Game 18 was investigated because its theoretical dynamics

involve a persistent cycle.  Games 9 and 12 have only a mixed-strategy equilibrium, and hence

potentially interesting dynamic paths.

We also investigate two additional versions of game 13 (with 20 added to each cell, and

with 20 subtracted from each cell) and an additional version of game 16 (with 20 added to each

cell).  The motivation for this variation was that if the initial aspiration level, ax(1), is fixed

independent of the game payoffs (for example, determined by the participant's anticipated

compensation for the whole experimental session), then adding 20 to all payoffs should change
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behavior.  For instance, if ax(1) = 50, then in game 16 the "A" payoff of 20 is substantially less

than the initial aspiration level thereby inducing experimentation, while with 20 added to each

cell, since then 40 is much closer to 50, experimentation (and hence separatrix crossings) should

occur less often.  The experimental evidence, however, is 5 and 4 crossings out of ten sessions of

each version of game 16 respectively - a statistically insignificant difference at all commonly

accepted significance levels.  We, therefore, discard the hypothesis of a fixed initial aspiration

level independent of the game payoffs.

The games used in each session are listed in Table 2.  Note that the range of payoffs for

the games differs substantially from [20,70] to [0,100].  In HS99, we found support for the

hypothesis that a single payoff rescaling parameter, β1, applies to a wide range of games

provided the payoffs are first rescaled to [0,100].  On the current data set, we also found that the

maximized LL increased with such rescaling.  Therefore, in this paper we report only results

obtained from rescaling to [0,100].  This implies that all the versions of games 13 and 16 are

“equivalent”, an assumption that has been verified by independent analysis of the choice

behavior across the different versions.4

In addition to the plot of the dynamic path for one of the sessions shown in Figure 1, we

also report the individual choice behavior for that data in Table 3. The entire data set is available

upon request from the authors.  A cursory look at Table 3 suggests that participants, for the most

part, do not persist in “cooperative” behavior (action B in that game) unless others also

simultaneously cooperative.  For instance, although six participants chose B in period 1 (putting

the initial play close to the separatrix), all but one abandoned cooperation in period 2, and none

of the three who cooperated in period 2 continued to do so in period 3.  Even in the critical

period 4, of the five who chose B, only two persisted with B in period 5.  While nine of the ten

participants who cooperated in period 5 continued to cooperate in period 6, by then B was the

myopic best response.  Similar patterns can be observed throughout the data.  Hence, an ocular

analysis of the data favors the experimentation explanation over the anticipated reciprocity

explanation.  We will rigorously test this and other hypotheses in the next section.

5.  Maximum Likelihood Results.
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    5.1.  The Basic Rule Learning Model.

We estimated the 10 parameters of the basic rule learning model using all the data from

the 25 sessions.  We pool over games in order to try to identify regular features of learning

dynamics that are general and not game-specific, so we can be more confident that these features

will be important in predicting out-of-sample behavior.  The ML parameter estimates and

standard errors5 are given in Table 4, and the maximized LL is -8550.21.

There are similarities and differences between these parameter estimates and those for a

different data set reported in S00b.6  First, as in S00b, we find β0 = 1, so past propensity

differences between rules persist unless affected by performance.  The initial propensities for

herd behavior (δh) and trembles (ε), and hence the total propensity to use some evidence-based

rule are similar.  Also the standard deviation of the initial distribution over evidence-based rules,

σ, is similar, but the mean (θν  , ) is notably different.  2ν is zero, and 1ν is less.  Despite the low

t-ratio for 1ν , the lower bound on the 95% confidence interval was 0.296, which is still large

enough to put substantial probability of the best response to the level-1 belief.  However, 3ν is

still precisely zero.  θ  is much higher, implying that beliefs adjust quicker, while the rescaling

parameter for the reinforcement function shrinks 38%.  However, the most substantial difference

is the transference parameter that was estimated to be 1 in S00b, but only 0.308 here; also the

standard error is much larger.

Despite these differences, the contribution of Rule Learning is robust.  Restricting β0 = 1

and β1 = 0 yields a model with diverse rules but no rule learning.  The maximized LL decreases

to -8569.93.  Since the transference parameter (τ) no longer plays a role, the likelihood-ratio test

has 3 degrees of freedom, and the hypothesis of no-rule-learning has a p-value of less than

3×10-9.

To illustrate the amount of rule learning that takes place (hence the behavioral effect of

β1), Figure 3 shows selected ϕ(ν,θ,t|β) values aggregated over the domain of θ for the intial

period (t = 1), after the 12 periods of the first run (t=12), and after the 12 periods of the second

                                                                                                                                                                                  
4 This rescaling implies that the initial aspiration level in rescaled units is ax(1) = [maxjk Ujk - maxjk Ujk ]/2 = 50, for
all games, which implies that the initial aspiration level in un-rescaled units varies across games depending on the
original game payoffs.
5 Standard errors and confidence intervals were obtained via parametric bootstrapping (Efron and Tibshirani, 1993,
pp. 53-55, 169-177).
6 To ensure stability of the dynamic process, an upper bound of 1 is imposed on β0.
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run (t=24) for a typical session (namely 6/18/98 for which the first-run data are given in Figure 1

and Table 3.).  These ϕ values come from the model of section 5.3 below.  Seven rules categories

are shown, accounting for over 96% of the probability mass.  The "herd&tremble" category on

the left aggregates the herd rules and the tremble rule, and shows a substantial decline in the

propensities to use these rules.  The next five rules are evidence-based rules where the three

numbers that label each category are the values of (ν1, ν2, ν3)
7;  thus, the first three categories are

"level-1" rules with increasing degrees of precision.  These rules show a substantial increase in

propensity over time.  The next rule combines level-1 and level-2 evidence, and the next rule

combines level-1 and Nash evidence;  both rules show a modest increase in propensity over time.

The final category is a pure cooperation rule, the propensity of which appears fairly constant

over the first run and then declines dramatically over the second run.

    5.2.  Aspiration-Based Experimentation Results.

We investigated three versions of experimentation rules: (1) uniformly random choice,

(2) imitation of the recent population distribution, and (3) uniformly random beliefs.  The

parameter estimates, standard errors and maximized LL for each version are given in Table 5.  In

terms of LL, experimentation by imitation has the lowest LL (-8549.69; a statistically

insignificant improvement of only 0.52).  This poor performance is due to the fact that the basic

rule learning model already includes imitation via the herd rules.  We also find that the estimates

for (δh, δx, ε) for the imitation version are quite different from any other version, which is

attributable to multi-colinearity between the imitation rule and the herd rules.  Note the low t-

ratio for δx, indicating that we cannot reject the hypothesis that δx = 0.

Experimentation by uniformly random choice shows a LL gain of 3.38; with two degrees

of freedom this gain has a p-value of 0.034, which is not impressive considering there are 625

subjects in the data set.  Moreover, the (δx ε) estimates are quite different from the basic rule

learning model, which is probably attributable to the multi-colinearity between random-choice

experimentation and the tremble rule in the basic rule-learning model.  Despite the seemingly

repectable t-ratio for θ2, the 95% confidence interval is (0.0007, 0.921), shedding doubt on the

role of aspirations in this model.

                                                       
7 Note that these are the same values as used in Table 1.
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The largest gain is LL is for experimentation by random beliefs.  This gain of 5.51 has a

p-value of 0.004, and so is statistically significant.  Again, we find a large confidence interval for

θ2 (0.0001, 1.0), shedding doubt on the role of aspirations.  We can test the hypothesis that

aspirations are unimportant by setting θ2 = 0;  then the initial aspiration level is fully discounted

so the experimentation act, px(t), is reinforced by its actual expected payoff to the most recent

population choices – like all other behavioral rules in the model.  The maximized LL of this

restricted model decreases by only 1.10, and hence is not statistically significant at any common

acceptance level.  Therefore, we cannot reject the hypothesis that experimentation by random

beliefs does not depend on aspirations in this data set.  Yet, there is support for a simple

experimentation-by-random-belief rule  (3.3%) that is reinforced like any other behavioral rule.

Since none of the other versions of aspiration-based experimentation does substantially better,

we conclude more generally that aspirations (as modeled) play essentially no role in this data set.

    5.3.  Reciprocity-Based Cooperation.

Table 5 also gives the parameter estimates, standard errors, and maximized LL for the

anticipated reciprocity model.  We note that the estimate of the patience parameter, θ2, is zero,

indicating that players immediately react to the payoff from the cooperative action rather than

reinforcing cooperative propensities by anticipated future reciprocity.  The individual choice

behavior (e.g. Table 3) is consistent with this finding.  On the other hand, the estimated initial

propensity to cooperate (δc) is about 3.7%, and statistically different from 0 (p-value < 10-13).

Therefore, we can strongly reject the hypothesis that there is no cooperative behavior in this data

set (i.e. δc = 0).  Another curious finding is that the transference estimate increases to 0.888.8

The gain in LL due to a non-reciprocity-based cooperative rule is 27.81, which is much

larger than the gain from Rule Learning without any cooperative rule (19.72).  Out of curiosity,

we estimated the model with a non-reciprocity-based cooperative rule but without Rule Learning

(beta1 = 0), and obtained a LL value of -8550.69; hence, adding a non-reciprocity-based

cooperative rule to the no-Rule-Learning models yields a LL gain of 19.24, while the further

addition of Rule Learning yields a LL gain of 28.28.  Therefore, we can even more strongly

reject the hypothesis of no rule learning in the presence of this cooperative rule.
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Because it is irrational to anticipate reciprocity in the last period of an experiment, we

considered alternative versions of anticipated reciprocity that eliminated the cooperative rule for

the last period9, but the results for these versions were essentially the same.

    5.4.  The Tit-for-Tat Rule.

Estimating the TFT model, we found a maximized LL value of -8530.01, which is a

substantial gain from the basic rule learning model, but still less than rule learning with a pure

cooperative rule.  Furthermore, the estimates for the TFT parameters are (c, γ, δTFT ) = (0.04,

5.03, 0.047) respectively.  Given these parameters, ψ(t+1;fc(t),c) is a sharp "step function" at

0.04, implying that as long as one person out of 25 in the population chose the cooperative action

in the period t, the TFT rule will cooperate in period t+1.  This behavior is not much different

from unconditional cooperation.

Since our specification of ψ(t+1;fc(t),c) with c > 0 excludes pure cooperation, we decided

to test another specification that would admit pure cooperation.  This was accomplished simply

by letting c take on negative values: c ∈ [-0.01,1).  Not surprising, the maximum LL was

achieved for parameter values that mimicked a pure cooperation rule.  Therefore, we cannot

reject the hypothesis that the TFT rule adds nothing to explaining the data over a pure

cooperation rule.

6.  Conclusions

We have demonstrated how the framework of Rule Learning can accommodate

behavioral rules like aspiration-based experimentation and reciprocity-based cooperation.  In the

data set considered consisting of 50 runs of 12 periods each involving 625 subjects, we found no

evidence of aspiration-based experimentation or reciprocity-based cooperation.  We did,

however, find weak evidence for a simple experimentation by random belief rule that is

reinforced by its actual expected payoff, and strong evidence for a simple cooperation rule that is

also reinforced by its actual expected payoff like all other rules in the Rule Learning model.

Further, we found no evidence for a tit-for-tat rule.

                                                                                                                                                                                  
8 At the suggestion of a referee, we considered an encompassing model with a separate transference parameter for
the anticipated reciprocity variable;  however, we found no improvement in the maximized LL whatsoever, and
therefore cannot reject the hypothesis of a simple transference parameter.
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However, our conclusions regarding a simple cooperation rule must be softened.  While

the maximized LL dramatically increases with the addition of a simple cooperation rule, this gain

comes largely by moving the mean prediction for the first period of Game 16 closer to the

separatrix. Since the mean starting point for the dynamics is so close to the separatrix, random

fluctuations around the mean generate starting points on both sides of the separatrix, which lead

to final outcomes being a fairly even split between the two equilibria.  However, simulated paths

rarely exhibit the reversal and separatrix crossing pattern (like Figure 1) seen in the data.  Since

the leading theoretical explanations of such behavior (aspiration-based experimentation and

anticipated reciprocity) fail to be significant on this data set, we still have a behavioral pattern

without an adequate explanation.

                                                                                                                                                                                  
9 For the last period of each run in another version.
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Figure 1.  Evidence of Non-Myopically Rational Behavior.
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Figure 2.  Games

1 A B C

A 70 60 90

B 60 80 50

C 40 20 100

4 A B C

A 70 30 20

B 60 60 30

C 45 45 40

9 A B C

A 30 50 100

B 40 45 10

C 35 60 0

12 A B C

A 30 100 22

B 35 0 45

C 51 50 20

13 A B C

A 60 60 30

B 30 70 20

C 70 25 35

14 A B C

A 50 0 0

B 70 35 35

C 0 25 55

16 A B C

A 20 0 60

B 0 60 0

C 10 25 25

18 A B C

A 25 30 100

B 60 31 51

C 95 30 0

19 A B C

A 80 60 50

B 60 70 90

C 0 0 100

21 A B C

A 68 4 49

B 86 41 4

C 72 25 39
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Figure  3
φ(t) for 6/18/98 Session 
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Table 1.  Choice Frequencies for Various Evidence-based Rules.

Game 13:

   (ν1,  ν2,  ν3)   A   B   C

(0.23,   0,   0) 0.760 0.076 0.164

(1.08,   0,   0) 1.0 0 0

(0.81, 0.27, 0) 0.937 0 0.063

(0.81, 0, 0.23) 1.0 0 0

Game 16:

   (ν1,  ν2,  ν3)   A   B   C

(0.23,   0,   0) 0.659 0.151 0.151

(1.08,   0,   0) 1.0 0 0

(0.81, 0.27, 0) 1.0 0 0

(0.81, 0, 0.23) 0.492 0.492 0.017
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Table 2.  List of Games by Experimental Session

Date First Run Second Run

2/17/98 16   9

2/19/98 19 12

4/7/98 14   1

4/9/98 13 21

6/18/98 16 13

7/16/98 16+ 13-

7/30/98 16+ 13r

1/28/99 16 19

3/2/99 16+ 19

6/9/99 16 13

6/10/99 16+ 13

8/6/99 16 13+

8/11/99 16+ 13+

1/27/00 16 14

2/16/00 16+ 14

2/24/00 16   1

4/13/00 16+ 14

7/13/00 16   4

7/19/00 16 14

7/20/00 16+   1

7/26/00 16 19

7/27/00 16+   1

8/2/00a 16+ 18

8/2/00b 19   4

8/3/00   1   4
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Table 3.  Individual Choices for Session 6/18/1998, Run 1 (Game 16).

SUBJECT
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

1 C A A A B A A B A B B A B C A A A C A A A A B A A
2 A A A A A A A C A A A A C A A B A A A A B A B A A
3 B A A A A A B C A A C A A A A A A A A A A A A A A
4 B A A A A C B C A A B A A C B A A A A A A A B A A
5 A B A A A B B A A A B A B B A B A A A A B A A B B
6 A B B A A B B B A B B B B A A B B B A B B B B B B
7 B B B B B B B B B B B B B B B B B B B B B B B B B
8 B B B B B B B B B B B B B B A B B B B B B B C B B
9 B B C B B B B B A B B B B B A B B B B B B B A B B

10 B B B B B B B B B B B B B B B B B B B B B B B B A
11 B B B B B B B B B B B B B B B B B B B B B B C B B

P
E

R
IO

D

12 B B B B B B B B B B B B B B B B B B B B B B B B B
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Table 4.  Parameter Estimates of Basic Rule Learning Model.

Stahl (2000b) Current Data Set

1ν 0.797  (0.207) 0.376  (0.201)

2ν 0.0696  (0.021) 0.000  (10-8)

3ν 0.000  (10-8) 0.000  (10-7)

θ 0.647  (0.026) 0.938  (0.049)

σ 0.767  (0.086) 0.800  (0.104)

δh 0.533  (0.028) 0.441  (0.021)

ε 0.090  (0.023) 0.123  (0.015)

β0 1.000  (0.002) 1.000  (0.003)

β1 0.00790  (0.00145) 0.00465  (0.00097)

τ 1.000  (0.049) 0.308  (0.145)

LL -8550.21
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Table 5.  Parameter Estimates of Enhanced Models.

Aspiration-Based Experimentation

Random Choice     Imitation Random Beliefs

   Anticipated
Reciprocity

1ν 0.361  (0.195) 0.393  (0.241) 0.324  (0.061) 0.324  (0.160)

2ν 0.000  (10-7) 0.000  (0.002) 0.0067  (0.007) 0.000  (0.0004)

3ν 0.000  (10-3) 0.000  (0.002) 0.000  (0.0005) 0.000  (0.0003)

θ 0.920  (0.051) 0.908  (0.057) 0.923  (0.044) 0.859  (0.043)

σ 0.747  (0.108) 0.828  (0.105) 0.587  (0.111) 0.715  (0.115)

δh 0.448  (0.022) 0.258  (0.143) 0.426  (0.021) 0.430  (0.023)

δx 0.108  (0.016) 0.171  (0.133) 0.0329  (0.014) 0.037  (0.006)

ε 0.000  (0.002) 0.131  (0.018) 0.115  (0.013) 0.084  (0.014)

θ2 0.757  (0.186) 0.588  (0.352) 0.860  (0.321) 0.000  (0.001)

β0 1.000  (0.003) 1.000  (0.003) 1.000  (0.003) 1.000  (0.002)

β1 0.00500 (0.00102) 0.00486 (0.00099) 0.00558 (0.00100) 0.00328 (0.00067)

τ 0.208  (0.168) 0.290  (0.132) 0.213  (0.136) 0.888  (0.179)

LL -8546.83 -8549.69 -8544.70 -8522.41


