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Abstract

A consumer entering a new bookstore can face more than 250,000 alter-
natives. The efficiency of compensatory and noncompensatory decision rules
for finding a preferred item depends on the efficiency of their associated infor-
mation operators. At best, item-by-item information operators lead to linear
computational complexity; set information operators, on the other hand, can
lead to constant complexity. We perform an experiment demonstrating that
subjects are approximately rational in selecting between sublinear and lin-
ear rules. Many markets are organized by attributes that enable consumers
to employ a set-selection-by-aspect rule using set information operations. In
cyberspace decision rules are encoded as decision aids.
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2 1 INTRODUCTION

1 Introduction

This is the third in a series of papers defining a procedural model of a consumer. In
this paper we consider the procedures consumers use to find a single item in their

preferred bundle of goods.

Let us start by considering the standard calculus consumer utility model:
maxU(xy,&a,...,2,) subject to  pie1+paza+ -+ parn=1 (1)
where U(x1, 2a, ..., #,) is the utility function, z; is the amount of the ith good, p;
is the price of the ¢th good, and I is the income. If a consumer were to solve this
problem with a numerical optimization technique, he or she might substitute the
linear constraint into the objective function, calculate the gradient given a starting
bundle of n—1 goods, and proceed iteratively using a conjugate gradient or variable
metric algorithm. In general (1) is not computable because the algorithms will
converge asymptotically. (See Velupillai (2000) for a comprehensive discussion of
computability in economics.) An extremely superficial interpretation of Simon’s
satisficing would be that the consumer stops iterating after a finite number of steps

with an € approximation rather than converging to the optimum.

Nevertheless, what we observe in the marketplace is that consumers shop for
their marketbaskets item-by-item and almost never consider bundles. Also, in the
marketplace almost all purchases are made in discrete units and even those like
gasoline are discretized to the smallest unit of coinage. Now, let us motivate why
consumers almost always search for the items in their preferred bundle of goods
item-by-item. Consider a grocery store organized so that consumers proceed down
a line of shopping carts already filled with alternative bundles of goods and select
the cart with the preferred bundle. To obtain some perspective why this alternative
economic organization does not exist, let us assume that the number of goods
categories equals 30 and that the number of alternatives in each category equals 10.

For example, a typical goods category might by breakfast cereal. These numbers are



very conservative for a modern grocery store. In this case the number of shopping

carts equals 1030,

In experiments with pens, we found that a subject could make a binary compar-
ison between two pens in 3.2 seconds, Norman et al (forthcoming a). If it only took
10 seconds to make a binary comparison between two bundles of 30 items, then
it would take 1.59 x10%3 years to find the preferred bundle. If each bundle were
placed in a shopping cart 3 feet long then the consumer would have to travel 5.68
x10%7 miles just to view all the bundles. The consumer shops item-by-item rather
than as a bundle so that the number of alternatives increase linearly rather than
multiplicatively with each category. Sellers organize their merchandise item-by-item
and not by bundles to vastly reduce the required display space.

Even when searching for a single preferred item, consumers can face a very large
number of choices. For example, the Tower Record store near the University of
Texas campus has over 90,000 music CDs. The Barnes and Noble bookstore at
the Arboretum has over 275,000 titles displayed for sale. If you examine the 1997
brochure for the Chevrolet Cavalier, there are over 20,000 possible combinations of
options, colors and accessories for the Cavalier convertible alone.

In Section 2, we construct procedural models of these rules in the form of al-
gorithms. In this paper we do not consider budgeting, which was considered in
Norman et al (forthcoming b). For the case of a very large number of alternatives,
these algorithms can be studied using the computational complexity concepts dis-
cussed in a brief survey in Appendix A. We show that the psychological rules found
in the literature are linear rules. For computers linear processes are considered
tractable; however, large linear processes are not tractable for humans because we
process an operation in seconds not nanoseconds.

We show that Tversky’s (1972) linear elimination-by-aspects (EBA) rule can be
modified to create a sublinear set-selection-by-aspects (SSBA) rule. In Section 3

we perform an experiment to test whether subjects are approximately rational in
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switching from an SSBA rule to a EBA rule when searching for an apartment with
certain characteristics. In Section 4, we consider the organization of goods in stores
both at physical locations and in cyberspace to show that stores organize goods to
make the application of an SSBA rule feasible.

Finaly, in Section 5 we conclude.

2 Theory

In this paper we use computational complexity analysis in order to provide tools
to study the case of a very large number of alternatives. Huber (1980) and John-
son (1979) proposed studying decision strategies by their elementary information
processes. We provide a brief introduction to computational complexity or combi-
natorial complexity in Appendix A.

We shall model a consumer’s selection of a preferred item from a set of goods
and services. Then we will determine the complexity of consumer search using each
of several alternative decision rules. At this point in the analysis our sole concern

is identifing the equivalence classes of various consumer decision rules.

2.1 Compensatory Decision Rules

We will first show that finding a preferred item in a set using a binary comparison
operator is a linear search.

Consider a simple model of a consumer searching for a preferred item from a
finite set of close substitutes X = {@1,29,...,2,}. The number of alternatives
is n and each item has m attributes. For example, if X were a set of household
vehicles, one attribute would be body type — 2-door, 4-door, SUV, SUV small,
pickup, pickup small, sports car. Other attributes would be 2 or 4 wheel drive, the
body color, and so on. The consumer determines the values of the attributes of ;
using the information operator, D(z;) = {a;1, a2, ..., dim | that has the property

of completeness. Thus A is an n X m matrix with row ¢ representing the values of
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the attributes of z;.

In order to determine preference between two items, z; and z;, consumer ex-
ecutes a binary ranking operator, R(a;,a;) — #; = x; or &; < x;, that has the
properties of completeness, reflexivity and transitivity. The execution of R com-
pares the respective attribute values of rows a; and a;. In Appendix A we show that
the compensatory decision rules proposed by psychologists are linearized variations
of a utility function that can be formulated as variations of the binary compari-
son operator. As increasing experimental evidence since Tversky (1969) shows that
humans are not always transitive, we point out that it does not change the compu-
tational complexity properties of the search, only the possibility that the outcome
might be inconsistent.

The goal is to find a preferred item defined as follows: z; € X such that =} > z;
for all z; € X. Finding a preferred item with a ranking operator is a variation
of finding the largest number in a set of numbers. Compare the first item with
the second, then compare the larger with the third, and so on. Let B(a;, q;) €
{R, Ry, Ra, Rs} where R,, Ra, Ry are defined in Appendix A.1.

Preferred Item Search Algorithm: Pref

Step 1: maz = 1 i =1 Perform D(maz)

Step 2: As long as ¢ < n, repeat step 3.

Step 3: Let ¢ increase by one. Perform D(z;). If B(amaz, @i) # Tmas = @

then max =i. O

The algorithm terminates with maz equal to the index of a preferred item.

Now let us consider the cost computational complexity of the problem of finding
a preferred item with respect to the growth parameter n, the number of alternatives,
and a fixed m, the number of attributes for each alternative. Thus, for this algorithm
performed on s an element of the set of problems S consisting of the n! combinations

of the n items in the set, the cost function is:

C(Prefls]) = C(D) x L(D) + C(B) x L(B) (1)
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where C(+) is the cost of executing the argument and L(-) counts the number of
times the argument has been executed.

Now let us consider the cost of executing D and B. For simplicity, they are mod-
eled as constant over the entire set of items. An inexperienced decision maker might
gradually lower his or her information costs to some fixed value as the consumer
develops an efficient procedure. In the case of such learning the costs are bounded
between the initial costs and the efficient costs. The case of learning has no effect
on the subsequent results provided there 1s a fixed lower bound. In the marketplace
there would be considerable variation in executing these operators. The fixed cost
can be considered the efficient average cost.

We will model D and B as elementary operations with costs ¢p and cp respec-
tively. Since m is taken as a fixed constant, the cost of executing D is constant.
B’s execution cost is also fixed for each of the four possibilities, R, Ry, Ra, and Ry.
The first requires one nonlinear function evaluation over 2m arguments. The other
three require 2m function evaluations over 1 argument and up to 2m arithmetic
operations. We assume that all the functions are tractable by humans.

For this algorithm the worst case and expected computational complexity are
the same because the algorithm must process every item and the cost does not
depend on which combination is being processed.

Theorem 1: The worst case and expected computational complexity of finding
a preferred item using D and B is n:

Proof: Any algorithm based on 1D and B must perform at least n—1 R operations
to test all the items. Therefore the problem is bounded from below by Q(n).

The preferred item search takes n — 1 operations and n D operations; therefore,
this algorithm is O(n). By definitions D1-D3 in Appendix A the computational
complexity of this problem is n. ()

While the rules discussed in this section are linear, the absolute cost of exercising

one of these rules can be very high when n is large. If a human is aided by a
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computer, then linearly processing 2.5 million alternatives such as the list of books at
Amazon.com is a tractable problem because even a personal computer can execute
a billion operations per second. In contrast, a human may take seconds to execute
one operation, and even at one second per item, a human would take almost 700
hours to linearly process the Amazon.com book list. Within the range of human
capability, linear algorithms are not always tractable.

Up to now we have not assumed any organization of the set of items from which
the consumer will choose the preferred item. Without a specified organization,
the consumer has no criteria to create a reasonable stopping rule for satisficing
performance. We will now show that consumers have more powerful rules than
linear ones and that they face a market of goods organized to enable them to

employ these more powerful rules.

2.2 Elimination by Aspects Rule

In this section we shall examine the elimination-by-aspects rule in order to de-
termine in what sense it is more efficient than the compensatory rules consid-
ered in the previous section. Tversky [1972] defines the choice function underly-
ing the elimination-by-aspects procedure formally. However, he defines the actual
elimination-by-aspects procedure intuitively. The decision maker chooses an aspect
and then eliminates all items which do not possess the aspect. He or she repeats
the process until only one item remains.

To compare the EBA rule with the previously considered compensatory rules,
we shall define the EBA as an algorithm beginning by defining an aspect. An aspect
describes whether the item in question manifests some value or values for one or
more of its attributes. For example, if the aspect is SUV small, then each of the
items in X, a set of household vehicles, either has the aspect or does not have the
aspect. We could also consider an aspect SUV small plus 4 wheel drive.

EBA Algorithm
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Step 1: i = 1. Nomenclature: X° = X

Step 2: Define aspect 7; over the m attributes.

Step 3: Sequentially examine each item in X?~! and eliminate all those that do
not possess aspect 4; to obtain X7.

Step 4: Repeat steps 2 and 3 until X contains one item. O

In order to compare the EBA rule with the previously considered compensatory
rules we make two assumptions: (1) a consumer must make one information op-
eration per item to determine whether the item possesses the aspect, and (2) m
aspects T' = {v1,72,...,7m} are required to reduce the set X to X™ that contains
only one item.

To consider the cost of executing EBA we must define the costs of the individual
operations. Let D, and c,, represent the operation and the cost of determining
aspect ~; respectively, and let Dgps and c,p5 represent the operation and the cost of
determining whether an item possesses ;. The cost function for the EBA algorithm
is:

Clsl) = e, % L(Dy) + o % L(Duse) 2)
where as before L(-) counts the number of times the argument has been executed.
To analyze this algorithm we define the worst case as each cycle of Steps 2 and 3
that removes only one item until the m?? cycle when n—m items have been removed
leaving X™ with one item. The expected case for each cycle removes a fraction %
truncated to an integer where k = 2,3,. ..

Theorem 2: The worst case and expected computational complexity of finding
a preferred item using the EBA algorithm based on D, and D, is n.

The algorithm requires m D, operations. The number of D, operations is less
than n for each of the m cycles in the worst case with the total D,,s operations less

than mn For the expected case the number of D,,s operations for the first cycle is

1
k

h

n , the expected number for the second is in,.. ., the expected number for the m?

1

7w - The expected number of Dps operations is < kkjn, which is the sum of the

1s
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associated geometric series. Thus the EBA algorithm is O(n) in both the worst and
expected cases.

n Dgps operations are required for the first cycle. Thus £2(n) operations are
needed. As these results do not depend on the order of the items in the search, the
worst case and expected computational complexity are both n by definitions D1-D3
in Appendix A. O

While the EBA rule is a linear rule and therefore in the same equivalence class
as the other rules considered, it is absolutely more efficient. This 1s because the
EBA rule only requires the consumer to evaluate one aspect per item.

All of the rules considered so far have been linear rules. In appendix A.2 we show
that other noncompensatory decision rules, such as the lexicographic, conjunctive,
and disjunctive rules, also lead to linear decision rules. We shall consider a more

efficient rule based on set information operators.

2.3 A Sublinear Decision Rule

One approach to creating a sublinear search rule involves making the information
operator more efficient so that only one observation 1s required to determine the
subset of items in X that possesses the aspect. Whether this i1s possible or not
depends on how X is organized. For example, if all the items are heaped into a big
pile, then the searcher will have to examine each item individually to observe the
aspect under consideration. As we shall discuss in greater detail in a subsequent
section, goods for sale are frequently organized by attributes. For example, a new car
dealer organizes the models on his or her lot by make and model. Thus, a consumer
in the phone directory can select the Honda dealers in one information operation
and upon arriving at the lot can select the display of Civics in one information
operation.

Let us now consider the efficiency of the EBA rule with a more powerful infor-

mation operator, Q(7y;, X'~1) = X?. We shall call this the set-selection-by-aspects
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(SSBA) rule, where the information operator () means that given X'~! and v
the consumer can determine X' in a single information operation with cost cq.
For example, in a mens’ clothing store, a consumer examining a circular rack of
mens’ pants selects in one operation all pants that have a particular waist band by
observing the labels on the rack.

For the SSBA rule the order in which the 5; are executed is crucial. For example,
if a consumer in a metropolitan SMSA started a search for a new car by selecting
that the car must have a CD player, the consumer would have to go to every car
dealer, examine every car and create a giant list. Market organization dictates
that a consumer can only apply the set information operator effectively for a small
number of the possible sequences of aspects.

The SSBA is a refinement of Earl’s (1986) clarification, characteristic filter-
ing, of the EBA rule in which he pointed out that the sequence of EBA steps is
not arbitrary, but ordered. In his examples, i1t is clear that the economic agents
must sometimes be using set information operators and sometimes item informa-
tion operators. Thus, the SSBA rule can be thought of as a clarification to Earl’s
characteristic filtering rule.

Also, market organization usually requires the consumer to switch to a linear
rule before selecting the preferred item. In this subsection, however, we shall assume
that the search items are organized so that the consumer can use the SSBA rule
throughout the entire search in order to characterize its efficiency. We also assume
that for a given sequence of I'; X could be organized so that the SSBA rule could
be applied.

SSBA Algorithm

Step 1: i = 1. Nomenclature: X° = X

Step 2: Define aspect 7; over the m attributes.

Step 3: Execute Q(v;, X*~1)to obtain X".

Step 4: Repeat steps 2 and 3 until X contains one item. O
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The cost function for the SSBA algorithm performed on problem set element s
is:

C(SSBA[s]) = ¢y, x L(Dy) + ¢cg x L(Q). (3)
where L(-) counts the number of times the argument has been executed.

Theorem 3: The expected and worst case computational complexity of the SSBA
algorithm is 1 (constant).

The SSBA algorithm requires no more than m D, or m () operations; hence
it is O(1). Given the data structure, the SSBA algorithm requires at least m
D., operations and at least m @ operations; hence the SSBA algorithm is Q(1).
The number of operations does not depend on the order of the items; hence by
definitions D1-D3 the expected and worst case computational complexity of the
SSBA algorithm is constant. ()

To clearly understand the relationship between the EBA and SSBA rule assume
that there are r values for each attributes and that n = 7. Then, the SSBA rule
constitutes a logarithmic reduction in cost from the EBA rule.

The SSBA rule is a powerful rule that offers searchers the possibility of better
performance in finding a preferred item. We need to consider two questions related
to this rule.

1. Are humans approximately rational in its use?

2. Are markets organized to facilitate its use?

3 Design of SSBA experiment

The purpose of the experiment is to test whether subjects are rational in the use
of decision rule involving a set information operator. The experiment investigates
how many times subjects use a SSBA rule before switching to a linear rule when
searching for a specified apartment. By varying the time delay on the sublinear and
linear rules we can control when it is rational to shift from the sublinear rule to the

linear rule and see if subjects vary their shift points optimally with respect to the
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changing time delays. The shift point is determined by the relative time delays and
the number of alternatives.
Subjects were given incentives to find an apartment with specified traits from

the following table as fast as possible :

No. Bedrooms | Location Price
1 Riverside $200-300
2 West Campus | $300-400
3 Hyde Park $400-500
4 Far West $500-600

To find the specified apartment, the subject may click on either trait buttons or
object buttons. The trait buttons select those apartments with the specified trait
and eliminate the rest. The object buttons represent randomly ordered apartments;
clicking an object button tests that item individually to see if it has the desired

attributes. The decision process that is three levels deep 1s represented as:

Decision Tree

No trait

Linear search: 8, 27, 64

Linear search: 2,34 Linear search: 4,9, 16

Initially there are 8 possible apartments in experiments 1 and 4, 27 possible apart-
ments in experiments 2 and 5, and 64 apartments in experiments 3 and 6. If the
subject clicks on the correct trait button, the number of possible apartments is
reduced to 4, 9 or 16 respectively. If the subject clicks again on the correct trait
button, the number is further reduced to 2, 3 or 4.

The subject might click on the trait buttons twice to reduce the options to 2,
3 or 4 individual buttons. They also could click on the trait button only once
and then switch to a linear search over the 4, 9, or 16 remaining object buttons.
Alternatively, they can simply start with a linear search by clicking on up to 8, 27,

or 64 object buttons without using trait selection at all.
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Whether it 1s rational to click on a trait button, reducing the number of object
buttons over which a linear search must be conducted, depends on two factors.
One is the longer delay incorporated into the trait buttons versus the 1 second
delay incorporated into the object buttons. For experiments 1-3 the trait delay is
7 seconds and for experiments 4-6 the trait delay is 3 seconds. The other factor is
how many alternatives of each trait are included in the experiment. The data are

shown in the table below:

Exp | Trait Delay | No of Traits | No of Buttons | Apartment to Find
1 7 sec 2 X 2x2 8,4,2 2 bed-Riverside-$200-300
2 7 sec 3x3x3 27,9, 3 1 bed-Hyde Park-$300-400
3 7 sec 4 x4 x4 64, 16, 4 4 bed-Riverside-$300-400
4 3 sec 2 X 2x2 8,4,2 1 bed-West Campus-$200-300
5 3 sec 3x3x3 27,9, 3 3 bed-Riverside-$300-400
6 3 sec 4 x4 x4 64, 16, 4 3 bed-Far West-$300-400

To illustrate the decision process facing each subject, we display side by side the

initial interfaces for experiments 1 and 3:
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Initial interfaces for Experiments 1 and 3

wePleass Fhd HePlkeae Fhd
2-bedroom Rhverdde $200-4300 4-bedroom Riverside $300-$400
Trait Se bk ction: Fyou clidk, Trait Selection: Fyou click,
wau must wait 7 seconds wou must wait 7 seconds
Allbutkons wark Far every round All buttons waork for every round
D 1-bediaam Dz-bgdum m D 1-bediaam D 2badiaa mD Fbadiaam D d-badiaam
Cbjects Objects

HEAEGUEHEE | UEBHEEHEDEEEHE
HEEEAHEEEBEEH
Eperiment 1-Found 1 HEHEHEHERHEH
HEHHMMEHHEEHRH
HEHEHHHHEHEH
HEHH

Expetiment 3: Round 1

First the subjects see the trait buttons for the number of bedrooms on top and
the individual buttons for all the apartments on the bottom. Suppose in the first
experiment the subject clicks on button for 2 bedrooms in experiment 3. The
program eliminates all apartments that do not have 2 bedrooms and redraws the
frame. In the second screen, the subject has the choice of 4 location trait buttons
on top and a row of 16 individual apartment buttons on the bottom that all have
2 bedrooms. Now suppose the subject clicks on the Riverside trait button. The
program redraws the frame with no trait buttons and a row of individual buttons

on the bottom that all have the traits of 2 bedrooms and the Riverside location.
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The subject clicks on the individual apartment buttons in succession until he or she
finds the specified apartment, in this case the one priced $300-400.

Alternatively, the subject could simply click on the individual object buttons
on the bottom and never click on any of the trait buttons. Instead of narrowing
his search, the subject would look at all the possible apartments until he finds the
correct one. Subjects must decide whether clicking on the trait buttons or clicking
only on the object buttons is faster.

The text areas at the top of the interfaces provide the subjects with useful
information. The text area on the right displays “Go” to inform the subject that
the buttons will respond to a click. The text area on the left displays messages such
as “wrong button” or “” FANTASTIC, YOU FOUND THE RIGHT ONE. Start the
next round when the frame is redrawn.”

In the experiment, each of the 25 undergraduate subjects was paid a flat $7 for
participating and could win $10, 5, 3, or 2 if they had the lowest, second lowest, third
lowest, or fourth lowest times. These incentives encouraged subjects to click on the
buttons as fast as possible. There were three identical rounds in each experiment.
At the end of three rounds the total time for the experiment is shown in the left
frame and the winners are paid. Prior to starting the paid experiments the subjects
performed 6 practice rounds. They differed from the paid rounds in two respects.
The numbers of alternatives in each round were 2 x 2, 3 x 3, 4 x 4 and in the
first round the subject had to use the trait buttons, in the second round the subject
had to use only object buttons, and in the third the subject could use either. The
purpose of the practice rounds was to ensure that the subjects had an intuitive

grasp of the speeds at which the alternative decisions executed.

3.1 Experimental Results

Since the object buttons are in random order, a subject would on average have to

click on 1/2 of them to find the specified apartment. The expected delay time in a
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linear rule is compared with the delay time for a SSBA rule in the following table:

Expected time delays for SSBA versus Linear Rule

Exp | 1st Trait 2nd Trait 3rd Trait
Rule — | SSBA | Linear | SSBA | Linear Linear
1 7 4 7 2 1
2 7 13.5 7 4.5 1.5

3 7 32 7 8

4 3 4 3 2 1
5 3 13.5 3 4.5 1.5
6 3 32 3 8 2

The mean number of times the trait and object buttons were clicked are dis-

played below:

Trait Buttons Object Buttons

Exp | Forecast | Mean | SD | Mean | SD

1 0 0.35 0.55 3.70 2.44

2 1 0.77 0.60 7.49 6.65

3 2 1.39 0.53 7.21 6.85

4 1 0.72 0.70 2.94 1.90

5 1or?2 1.32 0.54 4.71 4.87

6 2 1.79 0.41 3.96 3.98
SIG .0001 .0001

As expected, the subjects increased their use of the trait buttons when the total
number of alternatives increased and when the trait execution delay decreased.

But, are these differences significant? The experimental design is a 3 x 2 bal-
anced factor design with the dependent variable, level, 0, 1, or 2 levels of trait
buttons clicked. The first factor is size, the number of alternatives: 2 x 2 x 2,
3 x 3 x 3, or4d x 4 x 4; and the second factor i1s delay, 7 or 3 second delay on

the execution of the trait buttons. The results are significant as shown in the table

below:
Analysis of Variance Procedure
Dependent variable: level Independent variables: size and delay
Source DF | Sum of Squares | Mean Square | F Value | Pr > F
Model 5 80.12 16.02 50.88 0.0001
Error 336 105.82 0.31
Corrected Total | 341 185.94
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The Duncan test indicates that the two delays have significantly different affects
and three sizes have significantly different affects. Another important consideration
is whether the 6 practice experiments were sufficient for the subjects to develop
their trait/object button strategy. The experimental design is a three factor design
with trait being the dependent variable and round, that is round 1, 2, or 3, as the
independent variable. If the subjects were changing their strategy in the experi-
ments with prizes the means will be significantly different. The fact that there is

no change in performance is shown in the following table:

Analysis of Variance Procedure
Dependent variable: level Independent variables: round

Source DF | Sum of Squares | Mean Square | F Value | Pr > F
Model 2 1.27 0.63 1.16 0.31
Error 339 184.68 0.54

Corrected Total | 341 185.94

With the exception of experiment 1, subjects on average used slightly fewer trait
buttons than forecasted. A much larger sample would be required to demonstrate
that this shift is significant. If we consider the winners’ use of the trait buttons,
they generally used the trait buttons more often as the number of alternatives
increased and the delay time on the trait button decreased, but they too used the
trait button slightly less often than one would expect from the table of expected
delays. For example, the winner of experiment 5 used the trait button once each
round instead of twice, although the difference in time 1s slight. But, in experiment
4, he did not use the trait button and in experiment 6 he used it twice each round.

The experiment indicates that the subjects in general and the winners in par-

ticular were approximately rational in their use of the trait and object buttons.

4 Market Organization

Books on retail design, such as Reiwoldt (2000), Barr and Broudy (1986), and Barr
and Field (1997), emphasize the visual display of goods and the creation of an

appropriate ambiance for prospective customers. They do not, however, emphasize
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that competition among sellers provides incentives for those sellers to organize their
merchandise in a fashion that reduces the search costs of the consumer. Consider
two stores that offer over 10,000 items for sale with the same selection and prices.
The first store simply places the merchandise in a big heap without any sort of
organization, forcing the consumer to search through the heap in order to find a
preferred item. The second store organizes the merchandise into display cases by
attributes. Most consumers would prefer the organized store because the average
search costs will be lower if they can perform several SSBA steps before switching
to linear rules. Such reasoning is implicit in store design and becomes explicit when
there is a problem. For example, Redjacket redesigned its Virgin megastores to help

customers locate departments and travel between them, Staff (2001).

What enables consumers to apply SSBA steps in their search is not that stores
specifically organize goods in sets defined by the consumer’s aspects. Rather, when
stores organize goods in a nested structure by attributes, they make SSBA steps
feasible. For example, clothing stores organize women’s and men’s clothes in differ-
ent areas of the store. Within the men’s clothing area, goods are further organized
into sports clothes, suits, underclothes and so on. Also, automobile dealers orga-
nize their new car lots by make and model. This organization enables buyers to
use many selection-by-aspect steps on aspects defined over the attributes because
sellers provide customers with labels to recognize sets, organize goods in patterned
displays which customers learn to recognize, organize goods in catalogues hierarchi-
cally through indices, and on web sites, provide search algorithms that return the

set with the specified characteristics.

To perform several SSBA steps, the consumer must define a sequence of aspects
consistent with the goods’ organization. Then he or she can execute several SSBA
steps in the search for the preferred item. For example, if a consumer started the
search for a new car by insisting that the car had a CD player, the consumer would

have to search every new car lot item by item to determine the set of new cars with
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CD players. To use an SSBA rule in the initial steps of a search, the consumer must
start with aspects that can be determined in a single operation such as the make
and model of a car.

Organizing goods in a nested structure by attributes simplifies the administra-
tion of a store and makes searches by potential customers more efficient. The profit
motive of the store overlaps with the desire for an efficient search for a consumer,
but the two are not identical. Organization of goods in stores also has a marketing
aspect which attempts to attract customers to goods that are the most profitable.

We will now consider in more detail the organization of markets in physical space

and cyberspace.

4.1 Physical Space

We shall consider the organization of a department store, apartment listings, and
automobile dealers’ displays.

Tower Records in Austin is a CD department store that carries roughly 93,000
CDs. To increase the efficiency of consumers’ searches Tower Records is organized by
attributes such as musical styles and further organized into musical groups/composers

that are organized alphabetically, and then by album as is shown in the figure below.
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As can be seen there are two basic attributes: music and another to nonmusic.
Music then splits into two branches, upstairs and downstairs. Both of these have
almost identical structures, however upstairs also contains the choice of composer,
along with artist, thus upstairs and downstairs cannot be combined. If a consumer
wanted a recording of a Phillip Glass work, the consumer would execute SSBA steps
to move upstairs, select a style, the artist Phillip Glass, and then can look for specific
works. If all the CDs were in a heap, a consumer would need about 26 hours to
select a particular recording using a linear rule if he or she could observe one CD per
second on average. The organization of Tower Records is typical of a department
store where the customer can perform several SSBA steps before switching to linear

rules.

Now let us consider a student at the University of Texas at Austin might search-
ing for apartment in physical space using: (1) the classified section of the Austin-
American Statesman, (2) an apartment guide, or (3) an apartment locator service.
Because there are about 1000 possible rentals typically listed in the Austin newspa-
per, a linear rule to find an apartment might take as many as 110 hours assuming
the student made an appointment and drove to personally evaluate each rental.
Each of these alternative processes is organized to allow students to use SSBA steps

in their search.

The classified advertisements for rentals are first organized by type as (1) un-
furnished apartments, (2) condos/townhomes, (3) unfurnished duplexes, or (4) un-
furnished houses. Then each type is further organized by location in the Austin
SMSA. The Greater Austin Apartment Guide provides data on over 250 apartment
complexes divided into 5 sets by location. If a consumer knew the desired Austin
location and rental type, he or she could use a SSBA step over this combined aspect
before switching to a linear procedure. An apartment locator asks the student for
his or her preference over price, location and number of bedrooms. In a single SSBA

operation (from the perspective of the student) the locator shows most students no
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more than four apartments to be evaluated by linear rules.

Now let us consider the organization of automobile displays at car dealerships.
In the market for automobiles tens of thousands of items exist, a number that
makes it impossible to operate a search using an item-by-item rule. At any given
time there are approximately 300 brand new cars in any given lot. If a buyer were
to test-drive each car at just one dealership for 20 minutes 1t would take him or her
over four days of non-stop driving.

The organization of automobile data and auto displays at dealerships enables the
consumer to execute several SSBA steps in a search for a preferred vehicle. Austin’s
Capital Chevrolet Dealership divides its lot into cars, trucks, sport utility vehicles,
and vans. The main areas are then further classified by style. Then a potential
customer, for example, could execute SSBA rules to examine alternative colors and
options on an SUV. The Buick dealership has a slightly different approach. Buick
has five different models. In the showroom they display two of each model, one
custom version and one limited model. The customer walks around the showroom
and decides which model they would like to purchase, rather than walking around
in a parking lot. The salespeople at Buick cater to the more focused buyers and
ask the consumers questions to determine the desired aspects. This requires an
SSBA rule because the customer is deciding exactly what he or she wants in a car.
On the outside, the Buick dealership is divided into five sections, similar to the
Chevrolet divisions, and the salespeople can then select the set of cars that fits the

given description.

4.2 Cyberspace

In cyberspace the sequence of decision rules is frequently presented to the consumer
as a decision aid. Let us start with a student searching for an apartment in cy-
berspace. One such site is ApartmentGuide.com. On the first page the student

would select the state and city. On the second page the student would select the
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areas of town in which the student desires to live; the site provides maps for those
who want them. The third page asks the student to indicate a price range, the pre-
ferred number of bedrooms and any desired amenities. The program presents the
student with a list of all apartments matching the specified qualities. The various
apartment complexes provide the prospective renter with the details concerning the

apartment and apartment complex.

The new cards decision guide at AutoTrader.com is one example of a decision
aid for selecting an automobile. The consumer starts by selecting the body type,
such as sedan or SUV. Next, the consumer selects the maximum price. Third,
the consumer ranks a number of options, such as air-conditioning, from no opinion
to must-have. Then the consumer ranks a number of safety options. Next, the
consumer specifies the gas mileage range, the number of cylinders, and the type of
brakes. Then the consumer indicates a preference over the number of passengers
the vehicle can carry, the number of doors and the amount of room per passenger.
The consumer 1s asked to accept or reject various manufacturers and finally ranks

the criteria to order the list of final selections.

Another site that has decision aids for a variety of products is ActiveBuyers-
Guide.com. These decision rules are compensatory and the consumer is asked ques-
tions to determine the weights among the various attributes of the product. Decision
guides provide the consumer with quick, low cost tools to run scenarios that help
assess the importance of various criteria. In addition many sites enable a consumer
to create a table of alternative products with the attributes listed side by side. This
is much more efficient than obtaining the same information from brochures for the
various products. For most consumers, a necessary step in selecting an apartment
is viewing the apartment, just as a key step in selecting an automobile is test-
driving the vehicle. Internet sites can provide consumers with an efficient method
of narrowing the search to final candidates that would then require direct sensory

evaluation.
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5 Concluding Remarks

A next topics in this series are (1) the information structure facing the consumer

(2) consumer errors and (3) how decision aids affect performance.
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A Computational Complexity

To study decision rules, the decision process is modeled as a computer algorithm,
which could be defined in a variety of ways. Traub, Wasilkowski and Wozniakowski
(1988) define an algorithm very abstractly as a function from the problem element
to the solution range. A common practice is to define algorithms with respect to

a particular language, such as a quasi-Algol, Aho, Hopcroft, and Ullman (1974),



25

or a particular computer model such as a Turing machine. Algorithms can also be
described formally in computer languages using the Backus-Naur Form specification,
Pagan (1981). In this paper we shall follow the example of Knuth (1973) and
describe in English the algorithms that will be sequences of information operators
and decision operators. This is an acceptable compromise between rigor and the
need to communicate to a general audience.

Computer scientists compare computer algorithms based on the time required
for execution, the cost involved, or the required memory. To make such comparisons
the time, cost or memory are usually parameterized with respect to an important
attribute of the problem, such as n, the number of items to be ordered. We can
make these comparisons with a finite n, or make the comparisons as n increases.
Computer scientists find the later method advantageous because asymptotically,
only the dominant factor in an algorithm matters.

We now present the framework for the computational complexity analysis, which
is standard combinatorial complexity with the addition of information operators.
To define the cost function for an algorithm ¢ which solves a problem element
s € S, the problem set, we use the operators T = {vy,va, ... vy }. These operators
are the information and computational operators used in the algorithm . The
cost function, C'is: C(¢[s]) = > ¢y, - (numberof v; operations) where ¢; is the unit
cost of executing v;. Similarly, we can also define a time function, T: T(¢[s]) =
> 1y, - (numberof v; operations) where ¢; is the unit time of executing v;. For the
rest of the discussion we shall just consider the cost function. The development of
the time function would be the same.

For this discussion, we shall only consider the worst case analysis by defining
the cost function for an algorithm ¢ which will solve all s € S as: C(¢[5])) =
sup,es C(¢[s]). The development of the expected case is similar. To solve S the

consumer uses an efficient search, that is an algorithm ¢*; ¢*(S) = inf,ece C(5)

where @ is the set of all algorithms which solve S. Establishing that the cost of
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an efficient consumer ordering algorithm has a particular cost (or time) function
with respect to n is an example of computational complexity analysis. To define
the computational complexity of S let ¥ = Y(n) be a nonnegative function that
we wish to compare with the cost function, C' = Cy(n). Frequently Y is n, n? etc.

Consider the following definitions:

D1. Cis O(Y) if there exist 4,j > 0 such that C'(n) < jY (n) for all n > ¢.

D2. Cis Q(Y) if there exist ,j > 0 such that C'(n) > jY (n) for all n > i.

D3. S has computational complexity Y if there exists an algorithm ¢; € ® such

that Cy,, is O(Y') and for all algorithms ¢; € ®, C,,, is Q(Y).

The concept of computational complexity divides problems into equivalence
classes to facilitate comparison of the “difficulty” in problem solving. With these
definitions, problems can be identified as easy, (for example, members of the n
equivalence class) or hard, (for example, members of the exponential equivalence

class).

It is important that the reader have a intuitive grasp of the difference between
a sublinear decision rule and a linear decision rule. Consider a male customer
searching for a pair of pants in a department store. The racks of pants are organized
by waist band size, 28,30, 32 inches, and so on. The consumer can select all pants
with a particular waist size, say 36, in a single operation. But to determine the
pant length of pants with a waist band of 36 inches, he must examine each pair of
pants in the set of pants with a waist band of 36 inches. Selecting the set of pants
with waist band 36 is a sublinear decision; selecting a particular pant length 1s a
linear decision. In the former the consumer can use one information operation to
select a set and in the latter the consumer must perform one information operation

per item.
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B Other Rules

In order to keep the body of the paper focused we present other decision rules in

this appendix.

B.1 Linear Compensatory Rules

Let us consider some linear compensatory models proposed by psychologists:
Viz) =Y wj x U(Ai) (4)
J

This equation gives the value of z; as the sum of the products of the weight w; for
each aspect times the utility or scale value of that aspect U(4; ;).
Two other variations of the linear model are the additive difference model and

the i1deal point model. The additive difference model can be specified as:
Va (i, z5) =Y wy x Uj(Ai j — Ay j) (5)
J

The terms in the summation could be either positive or negative depending on
whether the utility of the difference in the j** option between z; and zy is positive
or negative. The ideal point model is also a variation of the linear compensatory

model:
Vi(wi) = ij < Uj(Ij = (Aij)) (6)
J
In this value function the utility or scale function measures the utility of the differ-
ence between the ideal I; and the actual.
The following binary comparison operator can be constructed from these linear
value functions:

Ry (x5, z;) Vizi) > V(xy)
Ra(xi, z;) } — ;- if{ Va(zs, 2;) >0 } else ; < x; (7)
Ri(wi, ;) Vi(xi) > Vi(z;)

B.2 Other Noncompensatory Decision Rules

We now consider the lexicographic, conjunctive and disjunctive decision rules.
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Lexicographic preferences are frequently used in economic analysis, for example
Encarnacion (1987). The options for lexicographic rules are quantified with more
being better than less, option by option as specified below:

a1 > aji

ziv it { 8
! 7 A5 = Ak for k = 1,2,...,v<m A w41 > Aj v+l ( )

To illustrate the lexicographic procedure let us represent each option as 7;; =

@ij/Gmaz, ; Where amaq ; 1s the maximum of the gt column of A. Consider the

following Z matrix:

O
S ==
Lol Ty N1 oo

1
1
1
1
1
1
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5

oy e

The lexicographic rule can be viewed as a variation of the elimination-by-aspects
procedure where the order in which the columns will be processed is given, but pro-
cessing each column requires an extra step, the determination of anas ;. If we
assume that determining the maximum must be performed by binary comparisons,
then the determination of the maximum of a sequence of numbers is a minor varia-
tion of a preferred item search algorithm where a;; > a; if a;; > a;5. Searching an
entire column has complexity n. It is easy to show that since m is taken as fixed,
the worst case and expected complexity of the lexicographic algorithm is n.

Now let us consider conjunctive and disjunctive decision rules. Hogarth (1987)
describes a conjunctive model as “one in which the decision maker sets certain
cutoffs on the dimensions such that any alternative which falls below a cutoff is
eliminated.” The number of variables upon which a cutoff has been established is

7 = m and let the cutoffs be {k; : 4 =1,2,...,m}. The conjunctive procedure is to

find z* such that a,; > k; fore =1,2,...,m.
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In the disjunctive model a decision maker might permit a low score on a di-
mension provided there is a very high score on one of the other dimensions. There
are several ways in which this psychological decision rule could be defined. Let us
define it as #* = a1 > ki or axo > kg or ... or ds,; > k. Defined this way
the conjunctive rule 1s an ‘AND’ rule in terms of Boolean logic and the disjunctive
rule 1s an ‘OR’ rule. For comparison purposes with the elimination-by-aspects rule
we shall assume that only one item meets all the criteria for both the conjunctive
and digjunctive rules and that the decision maker is not aware of this fact. The
execution of either rule would require a single pass through the n items and it is
easy to show that the worst case and expected complexity for both is n
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