Impact

Impact of Computation

Objective: In order to forecast the future impact of computers on society, the first step is to consider the impact computers have already had on society. We will consider the impact of computers on mathematics and the sciences, engineering and policy, business and institutions, and other human activities.

Impact does not require computers to think

While researchers have a fairly clear idea how a computer functions, they do not know how the brain works. Until researchers have a much better idea how life forms think, the issue of whether a computer can ever be programmed to think like a human is an open question. There is a prize, the Loebner Prize, for the first software program that passes the Turing test for intelligence. Von Neumann computers are much better at arithmetic operations than humans, but much worse at pattern recognition. Neural networks, a new type of computer with numerous interconnections between the processing units much like the human brain, show great promise in pattern recognition. Future computers may combine neural networks with digital computers to take advantage of the strengths of both. Currently, a computer, Deep Blue, was programmed to beat the world champion in chess. To what extent software running in computers can demonstrate creativity is an open question. Nevertheless, in spite of their limitations software and hardware have had a major social impact and will have an even greater one in the future.

Can computers think?

Mathematics and science

An example of the controversial impact of computers on math is the 4 color map problem. This problem deals with how many colors are necessary for a map on which no two adjacent areas have the same color. Example: How many colors would it take to color a map of the US? This problem has been worked on for at least one hundred years. The conjecture was four, however, no one was able to offer a proof until some mathematicians at the University of Illinois programmed their parallel processor. After using 1000 hours of computer time to examine all possible cases, they were able to state four colors were enough. This computer approach to proofs represents a fundamentally new approach to math. The computer methodology fundamentally challenges the ideal that the goal in proving theorems is simple proofs which can be checked by other mathematicians. Examining the proof for the 4 color map problem requires understanding the software which is anything but simple. In addition, mathematicians are beginning to study mathematics problems by graphical displays in a computer. This has created a controversial area of math known as experimental mathematics, that is studying math through computer experiments instead of proofs.

There are many phenomena in science which simply can not be studied without supercomputers. For example, to analyze models of the weather requires computing tens of thousands of equations. Until the invention of supercomputers, these equations could not be computed in a reasonable time frame. Numerous physics problems exist which push the limits of computing. Chemists have programs which simulate chemical reactions and thus enable the chemist to tell the outcome without experiment. Complex molecules are studied with computer graphics. Economist have developed several types of world models with up to 15,000 equations; however these models can be simulated on a workstation.

Engineering and policy

The important concept which a computer enables an engineer or a policy maker to perform is the computation of an outcome from a simulation model. This allows an engineer or policy maker to analyze different cases without having to build a prototype or to perform experiments. For example, in the design of a car or aircraft wing, the air resistance can be determined by a computer simulation program without having to perform a wind tunnel experiment. Similarly, an economist can forecast the consequences of alternative monetary policies. Computer simulations are both much faster and much cheaper than conducting actual experiments. The value of simulation programs depends on how well the theory upon which the model is built explains the underlying phenomenon. Simulation models based on theories from natural science are generally much more accurate than simulation models based on social science theories. Some engineering projects would not have been possible without computers. The Apollo project, which sent man to the moon, could not be completed without computers. Social science simulations are generally not very actuate.

Business and administration

One of the most important uses of computers is administration in business and other institutions. When I worked for Douglas aircraft in the 60s, over 50 percent of the computer use was for administrative tasks, such as accounting and records for government contracts. Currently most corporate and other institutional records have been computerized and are maintained in databases. Even here at UT, student registration is finally being computerized. Businesses and other institutions are increasing their use of computers to make analytical decisions. One example is the growing use of spreadsheets to consider alternatives. Thus, spreadsheets can be considered the business counterpart to engineering simulation programs. As computers become increasingly powerful, the amount of detail considered in business decision-making increases.

All human activities

Computers are now being used in most human activities. For example, in police work computers have been programmed to match fingerprints, and this application identified a serial killer in California. Before this program, the labor costs were simply too high to match fingerprints unless there were suspects. A hot area of computation in the arts is music synthesizers and digital movies. Another are programs to choreograph dance steps. In sports, computers are used to analyze athletes' performances. In medicine, a computer program has been developed which stimulate nerves to allow paraplegics to move their muscles. One success story is a young lady paralyzed from waist down who was programmed to ride a bicycle and walk.