Appendix for

"Boundedly Rational Search with Positive Search Costs"

D. Stahl, Economics Letters, forthcoming 2018

Proposition 1. There is a unique solution w* to the Kuhn-Tucker conditions that $g(w^*, V, \overline{p_c})$ ≤ 0 and $w^* g(w^*, V, \overline{p_c}) = 0$.

PROOF: First note that if $g(w, V, \overline{p_c}) < 0$ for all $w \in [0, 1]$, then $w^* = 0$ is the unique solution. Second, suppose there is some $w \in [0, 1]$ such that $g(w, V, \overline{p_c}) = 0$. It suffices to show that $\partial g(w, V, \overline{p_c}) / \partial w < 0$ at such a w. Recall

$$g(w, V, \overline{p_c}) \equiv -1/(1-w) + \gamma \{1 - p_a - \beta p_a p_c/N(1-\beta \theta(w, V, \overline{p_c}))\}. \tag{A1}$$

$$\partial g(w,\,V,\,\,\overline{p_c}\,\,)/\partial w = -1/(1-w)^2 - \gamma^2 \left\{ p_a\,(1-\,p_a) + (1-2p_a)\beta p_a\,p_c/N(1-\beta\theta) - \left[\beta p_a\,p_c/N(1-\beta\theta)\right]^2 \right\}$$

$$= -1/(1-w)^2 - \gamma^2 p_a [1 + \beta p_c/N(1-\beta\theta)][1 - p_a - \beta p_a p_c/N(1-\beta\theta)]. \tag{A2}$$

Note that the last term in square brackets of eq(A1) is identical to the last term in curly braces $\{\ \}$ of eq(A1). Thus, for any $w \in [0, 1]$ such that $g(w, V, \overline{p_c}) = 0$, $1 - p_a - \beta p_a p_c/N(1-\beta\theta(w)) = 1/\gamma(1-w) > 0$; hence, by eq(A2), $\partial g(w, V, \overline{p_c})/\partial w \le -1/(1-w)^2 \le -1$. Q.E.D.

Proposition 2. There is a unique solution w^* to the Kuhn-Tucker conditions that $G(w^*, V) \le 0$ and $w^* G(w, V) = 0$.

PROOF: $G(w, V) \equiv g[w, V, p_c(w, V)] = -1/(1-w) + \gamma [1 - p_a - \beta p_a p_c/N(1-\beta p_c)]$. It will suffice to show that $\partial G(w, V)/\partial w \le 0$ for all $w \in [0, 1]$.

$$\partial G(w,\,V)/\partial w = -1/(1-w)^2 - \gamma^2 \left\{ p_a \, (1-\,p_a) + (1-2p_a)\beta p_a \, p_c/N(1-\beta p_c) - N \Big(\beta p_a \, p_c/N(1-\beta p_c)^2 \right\} + (1-2p_a)\beta p_a \, p_c/N(1-\beta p_c) + N \Big(\beta p_a \, p_c/N(1-\beta p_c)^2 \Big) + (1-2p_a)\beta p_a \, p_c/N(1-\beta p_c) + N \Big(\beta p_a \, p_c/N(1-\beta p_c)^2 \Big) + (1-2p_a)\beta p_a \, p_c/N(1-\beta p_c) + N \Big(\beta p_a \, p_c/N(1-\beta p_c)^2 \Big) + (1-2p_a)\beta p_a \, p_c/N(1-\beta p_c) + N \Big(\beta p_a \, p_c/N(1-\beta p_c)^2 \Big) + (1-2p_a)\beta p_a \, p_c/N(1-\beta p_c) + N \Big(\beta p_a \, p_c/N(1-\beta p_c)^2 \Big) + (1-2p_a)\beta p_a \, p_c/N(1-\beta p_c) + N \Big(\beta p_a \, p_c/N(1-\beta p_c)^2 \Big) + (1-2p_a)\beta p_a \, p_c/N(1-\beta p_c) + N \Big(\beta p_a \, p_c/N(1-\beta p_c)^2 \Big) + (1-2p_a)\beta p_a \, p_c/N(1-\beta p_c) + N \Big(\beta p_a \, p_c/N(1-\beta p_c)^2 \Big) + (1-2p_a)\beta p_c/N(1-\beta p_$$

$$= -1/(1-w)^2 - \gamma^2 p_a \left\{ [1 - p_a - \beta p_a p_c/N(1-\beta p_c)] + (\beta p_c/N(1-\beta p_c))[1 - p_a - \beta p_a p_c/(1-\beta p_c)] \right\}. \tag{A3}$$

Observe that since $N \ge 1$, $1-p_a$ - βp_a $p_c/N(1-\beta p_c) \ge 1$ - p_a - βp_a $p_c/(1-\beta p_c)$, and since 1 - $p_a > p_c$, the last term is greater than or equal to $p_c[1 - \beta p_a/(1-\beta p_c)] \ge 0$. Hence, both terms in curly brackets $\{\ \}$ of eq(A3) are non-negative, implying that $\partial G(w, V)/\partial w \le -1/(1-w)^2 \le -1$. Q.E.D.