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ABSTRACT 

 A stylized fact from laboratory experiments is that there is much heterogeneity in human 

behavior.  We illustrate a Bayesian approach to characterizing this heterogeneity, and apply it to 

laboratory data on lottery choices and the Rank-Dependent Expected Utility (RDEU) model.  In 

addition, we define the concept of behaviorally distinguishable parameter vectors, and use the 

Bayesian posterior of the RDEU parameters to say what percentage of the population lies in 

meaningful regions.  For instance, we find that of the subpopulation that is behaviorally 

distinguishable from Level-0 behavior, 84% is not behaviorally distinguishable from the 

Expected Utility model.   
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1.  Introduction. 

 A stylized fact from laboratory experiments is that there is much heterogeneity in the 

subject population.  How to characterize that heterogeneity is an active research area among 

experimentalists and econometricians.  The approaches include individual parameter estimation, 

mixture models of different types, random coefficient models, and Bayesian methods.1  It is not 

the intention of this paper to explore all the methods, but rather to illustrate how the Bayesian 

method can be used to characterize the heterogeneity in the population and to test models of 

lottery choice.  In particular, we apply the Bayesian method to one of the best datasets from 

laboratory experiments on lottery choices: Hey and Orme (1994; hereafter HO). 

The HO dataset contains 100 unique choice tasks.2  Each task was a choice between two 

lotteries with three prizes drawn from the set {0£, 10£, 20£, 30£}.  After all choices were 

completed, one task was randomly selected and the lottery the subject chose was carried out to 

determine monetary payoffs.  On average, the difference in the expected monetary value of the 

two lotteries was about 5% of 30£ = 1.5£, so the expected monetary incentive for each choice 

task was 1.5£/100 = 0.015£  $0.02.  To each decision theory, the authors appended a probit-like 

stochastic error specification, and computed maximum likelihood estimates of the model and 

error parameters for each of 80 subjects.3 4 

                                                 
1 E.g. see Hey and Orme (1994), Harrison and Rutström (2008, 2009), Wilcox (2008, 2011), Fox, et al. (2011), and 
Stahl (2014). 
 
2 These 100 tasks were presented to the same subjects again one week later.  We do not consider that data here 
because the test that the same model parameters that best fit the first 100 choices are the same as those that best fit 
the second 100 choices fails.  Possible explanations for this finding are (i) that learning took place between the 
sessions, (ii) preferences changed due to a change in external (and unobserved) circumstances, and (iii) the subjects 
did not have stable preferences.  Therefore, we focus our attention on the first 100 choice tasks. 
 
3 Loomes and Sugden (1998) is a similar study as Hey and Orme (1994), except that their analysis of the data is 
based on non-parametric tests involving the number of “reversals” and violations of dominance.  Harrison and 
Rutström (2009) replicate HO and also run a similar experiment using 30 unique tasks.  Bruhin,et al. (2010) also 
explore heterogeneity, but they elicit certainty equivalents, so the task is arguably different from binary choices as in 
the other studies. 
 
4 Wilcox (2008, 2011) uses the entire HO data to carefully study alternative stochastic specifications and his 
“contextual utility” model.  Briefly, contextual utility essentially rescales the payoffs for each of the choice tasks to 
a [0, 1] scale based on the minimum and maximum payoff in that choice task.  He estimates a random parameter 
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The paper is organized as follows.  Section 2 presents the encompassing econometric 

model used to analyze the HO data set, plus preliminary estimation results.  Section 3 presents 

the Bayesian approach and interim results.  Section 4 develops the formal concept of “behavioral 

distinguishability” that uses the Bayesian posterior to ascertain the proportion of the subjects 

who are or are not consistent with hypotheses about the parameters, such as: what proportion is 

consistent with maximizing Expected Utility (EU)?  Section 5 asks and answers pertinent 

hypotheses.  For example, we find that of the subpopulation that is behaviorally distinguishable 

from Level-0, 84.2% is not behaviorally distinguishable from EU.  Section 6 concludes. 

 

2.  The Rank-Dependent Utility Model. 

 A convenient encompassing model is Rank-Dependent Expected Utility5  (RDEU) 

[Quiggin (1982, 1993)], which nests EU and Expected Monetary Value (EMV).  RDEU allows 

subjects to modify the rank-ordered cumulative distribution function of lotteries as follows.  Let 

Y  {y0, y1, y2, y3} denote the set of potential outcomes of a lottery, where the outcomes are 

listed in rank order from worst to best.  Given rank-ordered cumulative distribution F for a 

lottery on Y, it is assumed that the individual transforms F by applying a monotonic function 

H(F).  From this transformation, the individual derives modified probabilities of each outcome: 

  h0 = H(F0),  h1 = H(F1) – H(F0),  h2 = H(F2) – H(F1), and  h3 = 1 – H(F2).      (1) 

A widely used parametric specification of the transformation function, suggested by Tversky and 

Kahneman (1992), is  

    H(Fj)  (Fj)/[(Fj) + (1-Fj)]1/ ,          (2) 

where  > 0.  It should be noted that to obtain the common S-shape, in which small probabilities 

are over-weighted and large probabilities are under-weighted, one needs  < 1.  Obviously,  = 1 

                                                 
econometric model and finds that contextual utility fits and forecasts best.  We take a complementary Bayesian 
approach to characterizing the heterogeneity across subjects, and a use a different out-of-sample forecasting test. 

5 This model is the same as the Cumulative Prospect model (Tversky and Kahneman, 1992) restricted to non-
negative monetary outcomes. 
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corresponds to the identify transformation, in which case the RDEU model is equivalent to the 

EU model. 

Given value function v(yj) for potential outcome yj, the rank-dependent expected utility is 

    U(F)   j v(yj )hj(F).           (3) 

 To confront the RDEU model with binary choice data (FA vs. FB), we assume a logistic 

choice function: 

  Prob(FA)  =  exp{U(FA)}/[ exp{U(FA)} + exp{U(FB)} ,        (4) 

where   0 is the precision parameter.  As in EU theory, w.l.o.g. we can assign a value of 0 to 

the worst outcome and a value of 1 to the best outcome.6  Accordingly, for the data we specify v0 

 v(y0) = 0 and v3  v(y3) = 1.  This leaves two free utility parameters: v1  v(y1) and v2  v(y2).  

Hence, the empirical RDEU model entails four parameters: (, v1, v2, ).  Further, EMV is a 

special case of EU when  = 1, v1 = 1/3 and v2 = 2/3. 

One can estimate these parameters for each subject in the HO data set.  That approach 

entails (480=320) parameters, even without the corresponding variance-covariance matrices.  

Table 1 gives the population mean and standard deviation of the point estimates7.  The last 

column “LL” gives the sum of the individually maximized log-likelihood values.  Note that there 

is substantial heterogeneity across subjects in the parameter estimates for  and .   

 

 

                                                 
6 Since we estimate one precision parameter for all choice tasks, this scale specification is not simply the assumption 
of affine invariance; it is also an assumption about the magnitude of “noise” implicit in the logistic function relative 
to the payoffs.  Wilcox (2008) argues for a re-scaling for each choice task.  While we agree that re-scaling may be 
needed for diverse choice tasks, we feel that in the context of the HO tasks, since all four payoffs were encountered 
many times in succession, a re-scaling for the entire set is more appropriate.  To test our intuition, we estimated the 
Wilcox-type EU model for the HO data, and we found it fit slightly worse than a EU model with one precision 
parameter.  This different finding may be due to our using only the first 100 tasks of HO and estimating parameters 
for each subject rather than a random coefficient specification.   
 
7 This is the square root of the variance of the point estimates across subjects; it is not the standard error of 
individual point estimates. 
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Table 1.  Population Mean and Standard Deviation of Individual  

Parameter Estimates and the Aggregated LL 

 v1 v2  LL 

55.22 
(35.56) 

0.6690 
(0.1782) 

0.8371 
(0.1039) 

1.048 
(0.736) 

-2828.46

 

The previous comparisons involve estimates of a large number of parameters.  For each 

individual subject, we obtain point estimates of the parameters, but no confidence interval.  One 

could use a bootstrap procedure to obtain variance-covariance matrices for each individual, but 

that would be a computationally intense task and entail 12 additional parameters per subject.  

Further, the estimates for each subject would ignore the fact that the subjects are random draws 

from of a population of potential subjects and that therefore the behavior of the other subjects 

contains information that is relevant to each subject.  In contrast, the Bayesian approach is better 

suited to extract information from the whole sample population.  Consequently, we turn to the 

Bayesian approach.8  We believe that this Bayesian approach is complementary to Wilcox (2008) 

and Fox, et al. (2011). 

 

3.  The Bayesian Approach. 

 To develop the Bayesian approach let xi denote the choice data for subject i, and let f(xi | 

) denote the probability of xi given parameter vector .  Given a prior g0 on , by Bayes rule, 

the posterior on  is 

   g( | xi)    f(xi | )g0()/f(xi | z)g0(z)dz.         (5) 

                                                 
8 For an example, see Stahl (2014).   
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However, eq(5) does not use information from the other subjects even though those subjects 

were randomly drawn from a common subject pool.  Let N be the number of subjects in the data 

set.  When considering subject i, it is reasonable to use as a prior, not g0, but 

   gi()      ih1N

1
g( | xh)           (6) 

In other words, having observed N-1 subjects, gi() is the probability that the Nth random draw 

from the subject pool will have parameter vector .  We then compute 

   iĝ ( | x)    f(xi | )gi()/f(xi | z)gi(z)dz ,         (7) 

where x denotes the entire N-subject data set.  Finally, we aggregate these posteriors to obtain 

   g*( | x)    
N

1i i )x|(ĝ
N

1
.           (8) 

We can interpret g*( | x) as the probability density that a random draw from the subject pool 

will have parameter vector .  [Note that eq(8) puts equal weight on each xi.] 

 When implementing this approach we specify the prior g0 as follows.  For the logit 

precision parameter, we specify  = 20ln[p/(1-p)] with p uniform on [0.5, 0.999].  In this 

formulation, p can be interpreted as the probability an option with a 5% greater value will be 

chosen.  Since the mean payoff difference between lottery pairs in the HO data set is about 5%, 

this is a reasonable scaling factor. 9  (v1, v2) is uniform on the unit triangle such that v2  v1.  

ln() is uniform on [-ln(3), ln(3)].10  These three distributions are assumed to be independent.  

For computations, we use a grid of 41x41x41x21 = 1,477,341 points.   

 Since we cannot display a four-dimensional distribution, we present two two-dimensional 

marginal distributions.  Figure 1 shows the marginal on (p(), ), where  

                                                 
9 The following graphs and results are robust to this specification of the prior on . 
 
10 95% of the individual ML estimates of  lie in this range.  Using a wider interval for the prior on  has no 
noticeable effect on the Bayesian posterior at the cost of more grid points. 
 



 

7 
 

p()  1/[1 + exp(-0.05)].11   

From Figure 1 we see that the distribution is concentrated around  = 0.95, and that the precision 

values are large enough to imply that a 5% difference in value is behaviorally significant (i.e. 

p() > 2/3.   

Figure 1.  Marginal of g* on (p(), ).  

 

Figure 2 shows the marginal on (v1, v2).  From Figure 2 we see that the distribution is 

concentrated along the line v2 = (v1 + 1)/2, which implies that utility is essentially linear above 0.  

We can also see a spike near the EMV point (1/3, 2/3). 

                                                 
11 Thus, p() is the probability the subject will choose the option with the greater value whenever that value is 5% 
higher than the alternative option. 
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   Figure 2.  Marginal of g* on (v1, v2). 

 

 

 Given g*( | x) we can compute several statistics.  First, the log-likelihood of the HO data 

is LL(g*) = -3215.55.  In contrast, the log-likelihood of the four-parameter RDEU 

representative-subject model is -4423.62 .  Obviously, the heterogeneity implicit in g* fits the 

data much better than a representative-agent model.12  Compared to -2828.46 (Table 1), the log-

likelihood from the Bayesian method appears to be much worse.  However, the direct 

comparison is inappropriate.  LL(g*) is computed as if each subject were drawn independently 

from g*.  In contrast, -2828.46  is the sum of individually computed log-likelihoods using the 

subject-specific estimated parameters.   

 The g*-weighted mean of the parameter space is )β ,v ,v ,γ( 21  = (43.3, 0.667, 0.831, 

0.993); and  p(  ) = 0.853.  Further, ( 1v + 1)/2 - 2v  = 0.0027, as anticipated from Figure 2.  Also 

note that    1, meaning that on average H(F) is the identity function.  The variance-covariance 

matrix is 

                                                 
12 One can consider this Bayesian approach as an alternative random parameter model as used by Wilcox (2008).  
However, in contrast to Wilcox, we assume that each subject draws from this distribution once and uses those 
parameters for all choice tasks, rather than drawing for each choice task.  The latter can be viewed as a “diverse” 
representative agent model, while the former is a heterogeneous agent model. 
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However, these means and covariances are much less revealing when g* is multimodal.   

Indeed, we find evidence for multiple modes.  A grid point  is declared a mode if and 

only if it has the highest value of g* in a 7x7x7x7 hypercube of nearest neighbors of  in the 

grid.  The most prominent mode is at p() = 0.975, v1 = 0.55, v2 = 0.80, and  = 1.  The next 

most prominent mode is at p() = 0.999, v1 = 0.70,v2 = 0.90, and  = 1.12.  The third most 

prominent mode is at p() = 0.999, v1 = 0.85, v2 = 0.95, and  = 0.681.  Numerous other modes 

exist but are best described as shallow bumps. 

To test for over-fitting, we compute g* based only on the first 50 tasks in the HO data, 

and use this g* to predict the behavior for the second 50 tasks.  We find that the log-likelihood of 

the latter is -1538.05.  In contrast, using individual parameter estimates from just the first 50 

tasks, the log-likelihood of the second 50 tasks is -1851.34.  This result suggests that the 

approach of individual parameter estimates is more susceptible to over-fitting and less reliable 

than the Bayesian approach. 

 

4.  Behaviorally Indistinguishable Parameter Vectors. 

 The most productive use of g*( | x) is to test hypotheses.  For example, we can ask what 

percent of the subject pool has  = 1.  The answer is 10.5%; however, this number is an artifact 

of the discrete grid used for computation.  Assuming g* is absolutely continuous, as the grid 

becomes finer and finer, we would expect the percentage with  = 1 to approach 0.  On the other 

hand, what we really want to know is the percent of the population that is behaviorally 

 p() v1 v2  

p() 0.0089 0.0029 0.0028 -0.0124

v1  0.0311  0.0172 -0.0184

v2    0.0113 -0.0118

    0.1418 
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indistinguishable from EU (i.e.  = 1).  The behavior is simply the choice data for a random 

subject xi.   

To assess whether this data was generated by  or ’, we typically compute the log of the 

likelihood ratio (LLR):  ln[f(xi | )/f(xi | ’)].  A positive LLR means xi is more likely to have 

been generated by  than ’.  However, it is well-known that likelihood-ratio tests are subject to 

type-I and type-II errors.  To compute the expected frequency of these errors, let X1  {xi | ln[f(xi 

| )/f(xi | ’)] < 0}.  If the data in fact was generated by , and xi  X1, then a naïve LLR test 

would yield a type-I error.  Similarly, if the data in fact was generated by ’ and xi  X2 (the 

complement of X1), then a naïve LLR test would yield a type-II error.  Hence, the expected 

frequencies of type-I and type-II errors are respectively: 

  er1    X1 f(xi | )dxi    and   er2    X2 f(xi | ’)dxi  .        (9) 

If either of these error rates is too large, we might say that  and ’ are behaviorally 

indistinguishable.  Classical statistics suggests that a proper test statistic would have these error 

rates not exceed 5%.  

 Of course, by increasing the number of observations in xi, we can drive these error rates 

lower and lower.  However, practical considerations often limit the number of observations.  In 

laboratory experiments, boredom, time limitations and budget constraints place severe upper 

bounds on the number of observations.  The HO dataset with 100 tasks is unusually large.  

Moreover, to test for overfitting we would select a subset, say 50, to use for estimation, and the 

remaining 50 to assess parameter stability and prediction performance.  Therefore, for the 

illustrative purposes of this paper, we use 50 as a reasonable sample size upon which to judge 

behavioral distinguishability.  With 50 binary choices, there are 250 ( 1030) possible xi vectors.  

For the tests we want to conduct, generating all these possible xi vectors and computing er1 and 

er2 is obviously not feasible.  Instead, we generate 1000 xi vectors from f(xi | ) and 1000 from 

f(xi | ’).13  Then, er1 is approximated by the proportion of xi generated by f(xi | ) that lie in X1, 

and er2 is approximated by the proportion of xi generated by f(xi | ’) that lie in X2.  In summary, 

                                                 
13 We also made these computations with only 100 simulated xi vectors, and found virtually the same results.  
Therefore, we are confident that 1000 simulated xi vectors are adequate for our purposes. 
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we declare  and ’ to be behaviorally indistinguishable if either of the simulated type-I and 

type-II error rates exceed 5%, and to be behaviorally distinguishable if both of the simulated 

type-I and type-II error rates are less than or equal to 5%, 

 

5.  Questions and Answers. 

 The questions we are interested in answering are easily framed in terms of our 

behaviorally indistinguishable relationship on the parameters.  To begin, we want to know what 

percent of the population is behaviorally indistinguishable from 50:50 random choices (hereafter 

referred to as Level-0 behavior).  Since the latter entails the simple restriction that  = 0, we can 

compute whether  = (, u1, u2, ) is behaviorally indistinguishable from (0, v1, v2, ), and then 

sum g*(, v1, v2, ) over all the grid points (, , v1, v2) that are behaviorally indistinguishable 

from (0, v1, v2, ).  The answer is 4.0%, which leaves 96.0% that is behaviorally distinguishable 

from Level-0.  We are not interested in dissecting Level-0 behavior.  Therefore, all our 

subsequent questions are conditional on the parameters being behaviorally distinguishable from 

Level-0.   

Since Figure 2 provides strong evidence that the utility function is Linear Above Zero 

(LAZ), our next question is what percent of the population is behaviorally distinguishable from 

Level-0 but behaviorally indistinguishable from LAZ?  The latter criteria can be stated as: (, v1, 

v2, ) is behaviorally indistinguishable from (, v1, (1+v1)/2, ).  The answer is 92.5%.  Hence, of 

the population that is behaviorally distinguishable from Level-0, 96.4% (= 92.5/96.0) is 

behaviorally indistinguishable from LAZ.   

 Perhaps the question of most interest is what percent are behaviorally indistinguishable 

from EU.  To answer this, we ask how much mass g* puts on the set of parameters (, v1, v2, ) 

that are behaviorally distinguishable from Level-0 but indistinguishable from (, v1, (1+v1)/2, 1)?  

The answer is 78.2%.  Hence, of the subpopulation that is behaviorally distinguishable from 

Level-0, 84.5% (= 78.2/96.0) is behaviorally indistinguishable from EU.  

Our fourth and final question concerns the apparent aversion to 0 payoffs.  What percent 

of the population are pure EMVs (i.e. maximize EMV with no aversion for 0 payoffs)?  This 
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additional criteria can be stated as: (, v1, v2, ) is behaviorally indistinguishable from (, 1/3, 

2/3, 1).  The answer is 12.5%.  Hence, of the EU and LAZ subpopulation, 17.3% (= 12.5/78.2) 

have no aversion to $0 and 82.7% are averse to $0.  Aversion to 0 is akin to loss aversion14, and 

the latter is a common result in the psychology literature (e.g. Kahneman and Tversky, 1979; 

Erev, Ert and Yechiam, 2008).   

Figure 3 conveniently gathers these results in a bar graph.  The first section labelled 

Level-0 represents the 4.0% that are behaviorally indistinguishable from Level-0.  The second 

section labelled “not LAZ” represents the 3.5% (=96 – 92.5) that are behaviorally distinguishable 

from Level-0 and LAZ.   The third section labelled “Not =1” represents the 14.3% (= 92.5 – 

78.2) that are behaviorally distinguishable from Level-0 and =1 but not from LAZ.  The fourth 

section represents the  12.5% that are pure EMV maximizers.  The fifth and final section 

represents the 65.7% (= 78.2 – 12.5) that EMV maximizers but with an aversion to 0. 

  Figure 3.  Subdivisions of the Subject Population. 

 

 

6.  Conclusions and Discussion. 

 Our Bayesian analysis has characterized substantial heterogeneity in the subject 

population.  On the other hand it has revealed that 78.2% of the population is behaviorally 

indistinguishable from EU behavior (84.2% of the subpopulation that is behaviorally 

distinguishable from Level-0).  This finding reinforces Hey and Orme (1994)’s conclusion: “Our 

                                                 
14 With prizes of {0£, 10£, 20£, 30£}, the last three are clear wins, while 0£ is not a win and could easily be 
interpreted by the DM as losing relative to aspirations. 
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study indicates that behavior can be reasonably well modelled (to what might be termed a 

‘reasonable approximation’) as EU plus noise.  Perhaps we should now spend some time on 

thinking about the noise, rather than about even more alternatives to EU.” 

  Another interesting finding is that the vast majority of subjects are behaviorally 

indistinguishable from having a linear utility function from 10£ to 30£, although a majority 

exhibit an aversion to a 0 payoff. 

 We hope this paper has demonstrated the feasibility and usefulness of Bayesian methods 

when confronting laboratory data, especially when addressing heterogeneous behavior.  To 

extend our approach to models with more parameters, statistical sampling techniques can be 

employed to tame the curse of dimensionality.15 

 

  

                                                 
15 E.g. see Rubinstein and Kroese (2016).  
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