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ABSTRACT 

 The game theory literature has explored the implementability of subgame-perfect equilibrium outcomes of 

infinitely-repeated games using finite automata and found limited results.  This note shows by construction that if 

there is a finite number of vertices of the set of individually rational payoffs, then there is a finite automaton that can 

exactly implement any subgame perfect equilibrium. 
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Beginning with Rubinstein (1986), the game theory literature has explored the implementability of 
subgame-perfect equilibrium outcomes of infinitely-repeated games using finite automata.  Since it is difficult to 
imagine how an equilibrium could become common knowledge unless it can be unambiguously specified with a 
finite number of words and symbols in some shared language, restricting strategies to those that can be implemented 
by finite automata seems eminently reasonable.  However, it turned out that almost all individually rational 
outcomes can be implemented approximately with finite automata [Kalai and Stanford, 1988].  On the other hand, 
exact implementation might require infinite automata.  Subsequent research characterizing the set of all subgame-
perfect equilibrium outcomes for infinitely-repeated games with a common discount factor [Abreu, Pearce and 
Stachetti, 1990], revealed the potentially infinite complexity of equilibrium outcomes.  In this note, we provide a 
sufficient and non-vacuous condition such that any subgame-perfect equilibrium outcome can be exactly 
implemented using finite automata. 

Let G denote an N-player infinitely-repeated game with perfect monitoring and public randomization, in 

which the stage game is G  {N, (Ai)i∈N, (ui)i∈N}, and all players have a common discount factor δ < 1.  Let V* 

denote the set of all normalized pure-strategy subgame-perfect equilibrium payoffs of G.  Abreu and Sannikov 
(2014) show that when N = 2, V* has a finite number of vertices. They also provide an efficient algorithm for 
finding the vertices.  For N > 2, it remains an open question whether V* has a finite number of vertices.  We 

demonstrate that if V* has a finite number of vertices, every v  V* can be implemented by a finite automaton with 
public randomization, and we provide a complete specification for such a finite automaton.  As a corollary, when N 

= 2, every v  V* can be implemented by a finite automaton with public randomization. 

Assume V* has a finite number (M) of vertices, and let E denote the set of vertices.  It is convenient to 

index these vertices by ek, for k = 1, …, M.  Because V* is a convex set, for any v  V*, there is a vector of M non-

negative coefficients, (v), such that k k(v) = 1 and k k(v)ek = v.  Therefore, a public randomization device can 

generate any v  V* from just the vertices using (v) as the probability weights on the vertices. 

 Let vi denote the minimum payoff to player i in V*, and let ep(i)  E denote a vertex that gives player i this 

minimum payoff.  In other words, p(i) indexes the punishment vertex for player i.  By definition of V*, for each v  

V*, there exists an action profile a(v)  A  Xi Ai, and a continuation payoff vector r(v)  V*such that for all i  N, 
 

 vi = (1-)ui[a(v)] + ri(v)    (1-)ui[ai, a-i(v)] + vi  for all ai  Ai.       (1) 
 

Since r(v)  V*, by the previous paragraph, there is a vector [r(v)] such that  k k[r(v)] = 1 and k k[r(v)]ek = 

r(v).  Therefore, to generate an expected payoff vector of v  V*, all we need to do is specify current action a(v) 
followed in the next stage, in the event of no single-player deviation from a(v), by a public randomization over E 

using [r(v)] as the probability weights on the vertices; and in the event of a single-player deviation from a(v), say 
by player j, the next stage will implement ep(j). 

 Applying the preceding algorithm to the vertices, for each e  E, there is an action profile a(e), and a 

continuation payoff vector r(e) such that for all i  N, 
 

 ei = (1-)ui[a(e)] + ri(e)    (1-)ui[ai, a-i(e)] + vi  for all ai  Ai.       (2) 
 

It is now a simple matter to construct a finite automaton that generates a vector v  V*.  First, we create a 
state for each vertex.  In Figure 1, these states are represented by solid circles labelled ek for k = 1,…, M.  Exiting 
each of these states we put N+1 directed arrows.  One arrow will be followed if there is no single-player deviation 

from a(ek), and that arrow goes to a public randomization device with probabilities {i[r(e
k)], i = 1,…,M} on its 

exiting arrows.  In Figure 1, public randomization devices are represented by small solid squares.  To avoid 
depicting arrows looping back to the initial states, Figure 1 shows arrows going from the squares to dashed circles 
labeled ek;  the dashed circle signifies that it is not a new state but a duplicate depiction of the initial vertex state.   
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The other arrows exiting the initial states (solid circles) designate the path to be followed if there is a 

single-player deviation by player j  N, and it goes to the initial state corresponding to ep(j), again depicted as a 
dashed circle in Figure 1 since it is not a new state but a duplicate depiction of the initial vertex state.   While Figure 
1 depicts the N = 2 case, the extension to N > 2 should be obvious: just add more dashed circles for ep(j), j = 3,…,N.   

The large dashed box in Figure 1 illustrates the part of the automaton specified so far.  Notice that if we 
designate state ek as the starting state, we would have a finite automaton that generates expected payoff vector ek.  
Thus, by appropriate choice of the starting state, the automaton depicted by the large dashed box is sufficient to 
generate all the vertices of V*.  As usual simultaneous deviations can be ignored. 
 To complete the construction we precede the M initial vertex states by a public randomization device with 

arrows to each of the vertex states.  To generate payoff vector v  V*, we assign probabilities r(v) to its exiting 
arrows.  Thus, we have completely specified a finite automaton with public randomization that generates an 

arbitrary expected payoff vector v  V*. 
 Note that the finite automata displayed in Figure 1 has M+N states {ek, ep(j), k = 1,… M, j = 1,…,N.  .  

Abreu and Sannikov (2014) show that when N = 2, M  3 times the number of action profiles.  Thus, for a two 

player JH normal form game, any v  V* can be implemented by a finite automata with M  3JH states. 
 Since the individually rational set of normalized payoffs, denoted V0, has a finite number of vertices, it 
immediately follows that the Folk Theorem can be implemented by finite automata with public randomization.  That 

is, for any v  V0, and any  > 0, there is a * < 1, such that for all   [*, 1), there is a v’   V* with |v – v’| <  
and v’ can be implemented by a finite automaton as specified above. 
 When V* does not have a finite number of vertices, we can still specify a finite automaton that 

approximately implements any v  V* by using M extremal points of V* whose convex hull, VM, approximates V*.  

Define M to be the maximal distance between V* and VM.  W.l.o.g. assume M  0 as M  .  By “approximate 

implementation” we mean that for every v  VM there exists an action profile a(v)  A and a continuation payoff 

vector r(v)  VM, such that for all i  N, 
 

 vi = (1-)ui[a(v)] + ri(v)    (1-)ui[ai, a-i(v)] + vi - 2M  for all ai  Ai.      (3) 
  

Of course, to improve the approximation it would be very helpful to have the N punishment vertices, {ep(i), i  N}, 
in VM. 
 The assumption of a common discount factor is crucial for exact implementation. Chen (2007) has shown 
that with unequal discount factors V* may not have a finite number of vertices.  However, in such cases we can still 
obtain approximate implementation with finite automata as shown above. 
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 Figure 1.  A Generic Finite Automaton that Generates v  V*. 
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