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[Definition: a model of a 
population consisting of 
heterogeneous types of 
individuals, each type 
exhibiting a distinct 
probabilistic behavior, 
with the probability of 
each type equal to that 
type's proportion in the 
population. 

Introduction. 
 That all humans do not behave alike is obvious to even the most casual 
observer.  How to represent this heterogeneity in a model that allows us to predict 
behavior is far less obvious.  The simplist model of heterogeneity assumes that 
behavior is normally distributed about a mean for the population.  An important 
feature of this model is that there is a single mode of behavior: i.e. if one graphed a 
histrogram of the behavior, one would find a single hump.  We focus here on the 
countless cases where behavior is "multimodal": a histogram of the behavior would 
have multiple humps.  For example, when voting on the level of federal spending for 
education, Democrats might be a unimodal population, and Repulicans might be a 
unimodal population, but the mean desired spending level of these populations would 
be quite different, so Congress as a whole would be a bimodal population. 

 Formally, suppose there are K+1 unimodal subpopulations, which we will 
index k = 0, 1, ..., K.  An individual memberof subpopulation k will be refered to as a 
type-k individual.  Suppose some member of the whole population faces a situation 
that calls for a behavioral response.  Let s denote this situation and all the relevant 
data about the situation, and let X(s) denote the set of possible behaviors in this 
situation.  Let Pk(x|s) denote the probability that a type-k individual will exhibit 
behavior x from the set X(s).  Note that x could be a whole dynamic sequence of 
behaviors.  Finally, let αk denote the proportion of the whole population comprising 
subpopulation k (or equivalently, the probability that a randomly drawn individual 



 

©Copyright Macmillan Reference Ltd  02 January 2003 Page 2 

from the whole population is type k).  Then, the probability that a random individual 
from the whole population will exhibit behavior x in situation s is given by 

    ∑α≡
=

K

k
kk )s|x(P)s|x(P

0
    (1) 

Equation (1) is a canonical "mixture model". 

 When the probabilistic behavior of each subpopulation, Pk(x|s), is pre-
determined, then only the population proportions, αk, need be estimated from the 
behavioral data.  Identifcation only requires that Pk(x|s) ≠ Pj(x|s), for k ≠ j. 

 In other cases, the probabilistic behavior might be specified parametrically as 
Pk(x|s,βk), where βk is a vector of parameters for the subpopulation k.  For example, βk 
might represent the mean and variance of a normal distribution.  Since βj = βk would 
yield identical probabilistic behavior, this parametric case generally requires 
identifying restrictions on the parameter space (such as βj < βk). 

 In the next section, we illustrate the application of mixture models with the 
Level-n model of bounded rationality by Stahl and Wilson (1994,5). 

 

Level-n Model of Bounded Rationality 
 Consider a two-player finite normal-form game in which the payoff to player i 
is Uijk  when player i chooses action j and the other player chooses action k.  Let A ≡ 
{1, ..., J} denote the set of actions available to both players.  The Stahl-Wilson (1994) 
model begins with the assumption that a proportion, α0 of the population has no 
understanding of the game and by virtue of the principle of insufficient reason a type-
0 individual is equally likely to choose any action in A.  Hence, P0(j|s) is the uniform 
distribution over A, and s in this context represents the data for the game (i.e. A and 
U).  In the language of Stahl-Wilson, these players are called "level-0" types. 

 A Bayesian rational player must have a belief about what the other player will 
do.  The simplist non-informative model of other players is that they are level-0 types.  
A player that believes all others are level-0 types is called a "level-1" type, and 
chooses an error-prone best-response to this belief.  Specifically, define 

    ∑≡
=

J

k
ijkij )s|k(PUy

1
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which is the expected payoff to player i when choosing action j against a level-0 
player.  Then, the probabilistic choice function for a level-1 type is specified 
logistically as 

   ∑ ββ≡β
=

J
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where β1 is the precision of a level-1 type;  the higher the precision, the higher the 
likelihood the choice will be the best-response to the belief, and the lower the 
precision, the more equally probable will be all the actions.  Moreover, a logistic 
choice function has the property that the order of the choice probabilities corresponds 

to the order of the expected payoffs ijy1 .  The proportion of level-1 types in the 

population is denoted α1, and for simplicity of presentation we implicitly assume the 
same proportion for both player 1 and player 2 (i.e. a single population model). 

 The level-n theory proposes a hierarchy of types in which a level-n type 
believes that all other players are level-k types with k < n.  For simplicity of 
explanation and as an example, let us assume that a level-2 type believes that all other 
players are level-1 types.  Then, the expected payoff to player i when choosing action 
j against a level-1 player is  

    ∑ β≡
=

−

J
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where "-i" means "the other player, not i".  The logistic probabilistic choice function 
is  

   ∑ ββ≡β
=

J

k
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where β ≡ (β1, β2). 

 This simple three-type, level-n model yields a mixture model of the form: 

      ),s|j(P),s|j(P)s|j(P),,s|j(P iii βα+βα+α≡βα 2211100 ,  (6) 

where α  ≡ (α0, α1), and α2 = 1-α0 - α1, leaving only four free parameters.  This 
mixture model can be expanded in a straightforward manner to test for the presense of 
additional types in the population. 

Identification Issues. 

 Since all the types in eq(6) collapse to uniformly random choice when βn = 0, 
we need to impose identifying restrictions so )s|j(P0 , ),s|j(P i 11 β , and 

),s|j(P i β2  are distinguishable given the sample size of the observed data.  A Monte 

Carlo simulation can be used to determine appropriate lower bounds for the βn. 

 Even having imposed these parameter restrictions, for many games, both 
level-1 and level-2 types will behave the same, so such games will be inadequate to 
identify the αn parameters.  The solution to this identification problem is to use a 
variety of games, so that each type predicts distinctly different patterns of behavior 
across all the games.  Stahl and Wilson (1994) use ten symmetric 3 × 3 games; which 
permits 310 (59,049) distinct patterns of choice for an individual, and an underlying 
space of probabilistic behavior of dimension 210.  While this approach creates more 
than enough possibilites to identify the parameters of the proposed mixture model, the 
curse of dimensionality renders it impossible in practice to use non-parametric 
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methods to characterize the underlying distribution of behavior, and therefore, 
specificaton tests vis-a-vis the true data generation process are hopeless. 

Hypothesis Testing. 
 On the other hand, likelihood ratio comparisons can be used to test alternative 
model specifications.  For example, the hypothesis that there are no level-2 types in 
the population sampled is equivalent to restricting α2 = 0.  However, there is a 
complication because 0 is on the boundary of the parameter space (see Self and Liang, 
1987; and Feng and McCulloch, 1996).  Although the classical regularity conditions 
(as typically stated in advanced econometrics textbooks) are not met, the maximum 
likelihood estimators remain consistent.  Self and Liang (1987) suggest that the true 
asymptotic distribution of the likelihood ratio statistic under the null hypothesis is a 
mixture of chi-squares with 0 and 1 degree of freedom.  Since the right tail of the 
density of any such mixture lies to the left of a chi-square(1) density, the conventional 
chi-square(1) test would be too conservative, increasing the p-value of the observed 
statistic and lowering the probability of rejection;  hence, a rejection of the null 
hypthesis (α2 = 0) using the conventional chi-square tests would hold under the true 
asymptotic distribution.  

 Alternative theories of behavior naturally suggest different types that can be 
easily added to the mixture model.  For example, when each game has a unique pure-
strategy Nash equilibrium, a "Nash" type can be added.  If the Nash type is specified 
as putting probability one on the unique Nash equilibrium, then it is highly likely that 
one will be able to reject the hypothesis that there are pure Nash types in the 
population, because just one non-Nash choice by an individual would imply a zero 
probability of being such a pure Nash type.  In general, theories that make extreme 
predictions are easily rejected, and beg to be augmented with a theory of "errors". 

 There are two simple and reasonable theories of errors.  The first entails 
uniform trembles:  with probability (1-ε) the individual chooses the Nash equilibrium, 
and with probability ε any action is equally likely to be chosen.  This specification 
introduces an additional parameter to be estimated.  The second model of errors is 
prior-based:  as in eq(2), we define the expected payoff of each action given the prior 
belief that all other players will choose the Nash equilibrium.  Then, we define the 
logistic Nash choice function as in eq(3).  Again, one parameter is introduced, but 
now the choice probabilities are positively correlated with the expected payoffs.  
Haruvy and Stahl (1999) find that the logistic theory fits laboratory data much better 
than the uniform tremble theory.  When a game has multiple Nash equilibria, they 
find that the logistic theory using the prior belief that each Nash equilibrium action is 
equally likely fits the data much better than any equilibrium selection criteria 
(including payoff dominance, risk dominance, and security). 

 Given the huge variety of behavior that is possible, one might expect that 
adding most any type to a mixture model will improve the fit.  However, we have 
often failed to reject the hypothesis that certain types are absent.  For instance, Stahl 
and Wilson (1995) failed to reject the absense of a rational expectations type, Haruvy, 
Stahl and Wilson (1999) failed to reject the absense of a maximin type, and Haruvy 
and Stahl (1999) failed to reject the absense of payoff-dominance and risk-dominance 
types.  All of these tests had adequate power. 
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 As pointed out, using a variety of games to identify the model parameters 
creates the potential for enormous behavioral diversity, and highlights the poverty of 
typical laboratory sample sizes.  Given this diversity, it is often possible to reject the 
hypothesis that the parameters that maximize the likelihood of one small sample (of 
10-30 individuals) are the same as the parameters that maximize the likelihood of 
another similarly sized sample.  However, we caution the readers that these rejections 
are artifacts of overfitting small samples.  In the absense of any pre-determined, 
observeable criteria for distinguishing among different groups of laboratory subjects, 
we learn nothing useful from separate parameter estimates for each group.  Rather, it 
is better to pool all the data and obtain one estimate for the general population. 

Posterior Probabilies of Individual Types 

 Given parameter estimates (βα ˆ,ˆ ), Bayes theorem allows us to compute the 

posterior probability that any given individual is type-n, denoted p
niα . 

  ∑ βαβα=α
=

K

k
kikikninin

p
ni )ˆ,s|x(Pˆ/)ˆ,s|x(Pˆ

0
 ,   (7) 

where xi stands for the choices of individual i over all the games.  Stahl and Wilson 
(1995) show how to modify this formula to account for the uncertainty inherent in the 
parameter estimates.  They also find that 38 of 48 participants in their experiments 

can be identified with one type (i.e. pniα  > 90% for some n).  We suggest that this 

would hardly have been the case if the level-n model were not capturing a significant 
part of the true data generating process. 

Constancy of Types 
 The mixture model discussed and estimated assumes that an individual is one 
type for all situations he/she faces.  The above results on the posterior probabilites 
supports that assumption.  However, we need to consider alternatives to obtain a more 
rigorous conclusion.  One alternative is the hypothesis that an individual draws his 
type from the population of types (characertized by the αk's) independently for each 
game, which implicitly entails that all individuals are ex ante alike.  This ex ante 
homoegeneity hypothesis is strongly rejected by our data. 

 Consider instead the hypothesis that a type-k individual is highly likely to 
behave in the typical way, but with some small probability can behave like another 
type.  Specifically, suppose that with probability (1-ε) the individual behaves like a 
type-k, but with probability ε is equally likely to behave like any type.  For the Stahl-
Wilson (1995) data, we found a statistically significant improvement in the 
maximized log-likelihood with an estimate of ε̂  = 0.05.  In other words, individuals 
appear to be true to one type of behavior 95% of the time, and otherwise tremble to 
other types of behavior.  Since the level-0 type is part of the model, not surprisingly, 
allowing type trembles lowers the estimated proportion of the population that is type-
0.  Another attractive feature of this type-tremble mixture model is that it feeds easily 
into the Rule Learning framework of Stahl (2000, 2001). 
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Equivalent Mixture Models 
 For any distribution of behavior, )s|x(P , there are obviously uncountably 
many ways to represent that distribution as a mixture model, eq(1).  All of these are 
equivalent mixture models, and as such none can be rejected in favor of any other.  
Does this fact mean that mixture models are non-falsifiable and hence unworthy of 
scientific research?  The answer is no for three reasons. 

 First, the true data generating process may be a mixture of types, in which 
case, clever ways of isolating subpopulations of types would lead to falsifiable 
predictions.  Second, representing the data generating process as a mixture is a 
constructive approach that starts with archetypes and aggregates to population 
behavior.  This process does produce falsifiable hypotheses about the constituent 
types, and also provides a practical means of making prediction for novel situations.  
Third, the curse of dimensionality prevents us from obtaining a full characertization 
of )s|x(P , while the mixture model allows us to construct an approximation from 
simple constituent types. 

 Furthermore, when faced with two competing mixture models, it is always 
possible to create an encompassing model and use nested hypothesis tesing to select 
the best model.  See, for example, Haruvy, Stahl and Wilson (1998). 

 

Individual versus Population Models 
 While psychologists are primarily interested in the behavior of individuals 
(even in social settings), other social scientists such as economists and sociologists are 
more interested in aggregate population behavior.  Indeed, in many applications, the 
economist or sociologist may have only aggregate data.  Although theoretically 
models of individual behavior can be aggregated to produce models of population 
behavior, there are often informational and computational constraints to exact 
aggregation.  For example, because each individual has a unique history at any point 
in a repeated game, exact aggregation must keep track of all these unique histories, 
which grow in number exponentially with time.  Models which entail integration over 
possible histories can be computationally infeasible.  There is also the information 
conservation principle which states that a given sample of data contains only so much 
information - if you use that data to find the best fit for models of individual behavior, 
the information gained will not give you the best fit for models of population 
behavior. 

 The mixture models discussed above can be applied in a straightforward 
manner to population data.  The only difference is in the construction of the likelihood 
function for the data.  In an individual model, one first computes the likelihood of the 
behavior of each individual for all the games by type (a product of probabilities over 
the games), then sums these type-conditional likelihoods, and finally takes the product 
of these summed likelihoods over all individuals.  In a population model, one first 
computes the sum of the type-conditional probabilistic choice functions for each 
game, then computes the multinomial probability of the observed aggregate choices 
using the summed probabilities, and finally takes the product of these multinomial 
likelihoods over all the games.  The latter model does not impose the restriction that 
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an individual's behavior is of one type for all games.  Since the likelihood functions 
are different, the maximum-likelihood estimates of the individual model will differ 
from the maximum-likelihood estimates of the population model. 

Conclusion 
 Human behavior is often multimodal, so we need multimodal models to 
represent and predict such heterogeneous behavior.  The mixture model is ideally 
suited for this purpose.  The major challenge is the specification of constituent 
subpopulation types.  In accordance with the scientific method, we advocate theory-
based hypothesis generation and testing.  Since the best mixture model at any point in 
time will be an approximation of the true data generating process, there will always be 
the possibility of discovering a better approximation. 
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