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[Definition: a model of a
population consisting of
heterogeneous types of
individuals, each type
exhibiting a distinct
probabilistic behavior,
with the probability of
each type equal to that
type's proportion in the
population.

Introduction.

That all humans do not behave alike is obvious/en the most casual
observer. How to represent this heterogeneityrimodel that allows us to predict
behavior is far less obvious. The simplist moddieierogeneity assumes that
behavior is normally distributed about a mean fierpopulation. An important
feature of this model is that there is a single enoflbehavior: i.e. if one graphed a
histrogram of the behavior, one would find a sirfglenp. We focus here on the
countless cases where behavior is "multimodalisegram of the behavior would
have multiple humps. For example, when votinghenlével of federal spending for
education, Democrats might be a unimodal populatod Repulicans might be a
unimodal population, but the mean desired spenéwvej of these populations would
be quite different, so Congress as a whole would bienodal population.

Formally, suppose there afe-1 unimodal subpopulations, which we will
indexk =0, 1, ..., K. An individual memberof subpopulatidewill be refered to as a
typek individual. Suppose some member of the whole [atjon faces a situation
that calls for a behavioral response. &denote this situation and all the relevant
data about the situation, and ¥¢s) denote the set of possible behaviors in this
situation. LetPy(x|s)denote the probability that a tyfendividual will exhibit
behaviorx from the seX(s). Note that x could be a whole dynamic sequence of
behaviors. Finally, lety denote the proportion of the whole population casipg
subpopulatiork (or equivalently, the probability that a randordhawn individual
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from the whole population is tygg. Then, the probability that a random individual
from the whole population will exhibit behavior ix $ituation s is given by

K
P(x[s)= ZayR(x]|s) )
k=0

Equation (1) is a canonical "mixture model".

When the probabilistic behavior of each subpopatay(x|s), is pre-
determined, then only the population proportiaasneed be estimated from the
behavioral data. Identifcation only requires tRdk|s)= Pj(x|s), fork #j.

In other cases, the probabilistic behavior mightpecified parametrically as
Pu(X|sf), wheregy is a vector of parameters for the subpopulakiofror exampleg
might represent the mean and variance of a norisitdition. Sinces; = £ would
yield identical probabilistic behavior, this paranecase generally requires
identifying restrictions on the parameter spacel{sass < ).

In the next section, we illustrate the applicattdmixture models with the
Level-n model of bounded rationality by Stahl andséh (1994,5).

Level-n Model of Bounded Rationality

Consider a two-player finite normal-form game inieh the payoff to player i
is Ujx when player i chooses action j and the other plelyeoses action k. Lét=
{1, ..., J}denote the set of actions available to both pkydihe Stahl-Wilson (1994)
model begins with the assumption that a proporigrof the population has no
understanding of the game and by virtue of theggla of insufficient reason a type-
0 individual is equally likely to choose any actionA. Hence Pq(j|s) is the uniform
distribution overA, ands in this context represents the data for the garaeA and
U). In the language of Stahl-Wilson, these playgescalled "level-0" types.

A Bayesian rational player must have a belief alwhat the other player will
do. The simplist non-informative model of otheay#rs is that they are level-0 types.
A player that believes all others are level-0 tyjsesalled a "level-1" type, and
chooses an error-prone best-response to this bé&jeécifically, define

J
Vi = X Uik Po(k]s), (2)
bk

which is the expected payoff to player i when chogsction j against a level-0
player. Then, the probabilistic choice functionddevel-1 type is specified
logistically as

J
Pi (1SB1) =expB1yy; )/ kz_lexp(Blylik ), (3)
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whereg, is the precision of a level-1 type; the higher pinecision, the higher the
likelihood the choice will be the best-responséhmbelief, and the lower the
precision, the more equally probable will be adl tictions. Moreover, a logistic
choice function has the property that the ordehefchoice probabilities corresponds

to the order of the expected payogfﬁ . The proportion of level-1 types in the

population is denoteds, and for simplicity of presentation we implicitygsume the
same proportion for both player 1 and player 2 &.single population model).

The level-n theory proposes a hierarchy of typeshich a level-n type
believes that all other players are level-k typéh W< n. For simplicity of
explanation and as an example, let us assume t&egela2 type believes that all other
players are level-1 types. Then, the expectedfpayplayer i when choosing action
j against a level-1 player is

J
Yoij = kZlU ijk P-iz (K[s,B1), (4)

where “i" means "the other player, not i". The logistiolpabilistic choice function
iS

J
Py (j1sB)=expBayy; )/ kz_lexp(BzyZik ), (5)

wherep = (B1, B2).

This simple three-type, level-n model yields atowig model of the form:
R(ilsaB)=aoR(ils)+asP(jlspr)+azPs(jlsB), (6)

wherea = (oo, 1), anda, = 1-ap - o, leaving only four free parameters. This
mixture model can be expanded in a straightforwaagner to test for the presense of
additional types in the population.

Identification Issues.

Since all the types in eq(6) collapse to uniformagdom choice whepy, = O,
we need to impose identifying restrictionsB¢( j [s), P (j|sB1), and

P (j|s,B) are distinguishable given the sample size of beeved data. A Monte
Carlo simulation can be used to determine apprtplaver bounds for thg,.

Even having imposed these parameter restrictionsnany games, both
level-1 and level-2 types will behave the samesigzh games will be inadequate to
identify thea,, parameters. The solution to this identificatioalgem is to use a
variety of games, so that each type predicts didyidifferent patterns of behavior
across all the games. Stahl and Wilson (1994jarssymmetric % 3 games; which
permits 3° (59,049) distinct patterns of choice for an indivél, and an underlying
space of probabilistic behavior of dimensidfi 2While this approach creates more
than enough possibilites to identify the parametéthe proposed mixture model, the
curse of dimensionality renders it impossible iagbice to use non-parametric
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methods to characterize the underlying distribugbhehavior, and therefore,
specificaton testgis-a-visthe true data generation process are hopeless.

Hypothesis Testing.

On the other hand, likelihood ratio comparisons loa used to test alternative
model specifications. For example, the hypotheitthere are no level-2 types in
the population sampled is equivalent to restricting: 0. However, there is a
complication because 0 is on the boundary of thamater space (see Self and Liang,
1987; and Feng and McCulloch, 1996). Althoughdlassical regularity conditions
(as typically stated in advanced econometrics teo#tb) are not met, the maximum
likelihood estimators remain consistent. Self Arahg (1987) suggest that the true
asymptotic distribution of the likelihood ratio sstic under the null hypothesis is a
mixture of chi-squares with 0 and 1 degree of foged Since the right tail of the
density of any such mixture lies to the left ofreesquare(1) density, the conventional
chi-square(1) test would be too conservative, imireg the p-value of the observed
statistic and lowering the probability of rejectionence, a rejection of the null
hypthesis ¢, = 0) using the conventional chi-square tests woold under the true
asymptotic distribution.

Alternative theories of behavior naturally sugghiferent types that can be
easily added to the mixture model. For exampleswéach game has a unique pure-
strategy Nash equilibrium, a "Nash" type can besdddf the Nash type is specified
as putting probability one on the unique Nash dguuim, then it is highly likely that
one will be able to reject the hypothesis thatdreme pure Nash types in the
population, because just one non-Nash choice bydividual would imply a zero
probability of being such a pure Nash type. Inagah theories that make extreme
predictions are easily rejected, and beg to be angrd with a theory of "errors".

There are two simple and reasonable theoriesrofser The first entails
uniform trembles: with probability (&) the individual chooses the Nash equilibrium,
and with probabilitye any action is equally likely to be chosen. Tlpsdfication
introduces an additional parameter to be estimatd®® second model of errors is
prior-based: as in eq(2), we define the expectsaib of each action given the prior
belief that all other players will choose the Nasjuilibrium. Then, we define the
logistic Nash choice function as in eq(3). Againe parameter is introduced, but
now the choice probabilities are positively cortedawith the expected payoffs.
Haruvy and Stahl (1999) find that the logistic thefits laboratory data much better
than the uniform tremble theory. When a game halsipfe Nash equilibria, they
find that the logistic theory using the prior bétieat each Nash equilibrium action is
equally likely fits the data much better than aguigbrium selection criteria
(including payoff dominance, risk dominance, anclsiy).

Given the huge variety of behavior that is possibhe might expect that
adding most any type to a mixture model will impedte fit. However, we have
often failed to reject the hypothesis that certgires are absent. For instance, Stahl
and Wilson (1995) failed to reject the absenseratianal expectations type, Haruvy,
Stahl and Wilson (1999) failed to reject the abserfsa maximin type, and Haruvy
and Stahl (1999) failed to reject the absense wbf@ominance and risk-dominance
types. All of these tests had adequate power.
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As pointed out, using a variety of games to idgitlie model parameters
creates the potential for enormous behavioral ditygrand highlights the poverty of
typical laboratory sample sizes. Given this diitgst is often possible to reject the
hypothesis that the parameters that maximize kieéihiood of one small sample (of
10-30 individuals) are the same as the paramétatsrtaximize the likelihood of
another similarly sized sample. However, we cautie readers that these rejections
are artifacts of overfitting small samples. In #iisense of any pre-determined,
observeable criteria for distinguishing among aéfe groups of laboratory subjects,
we learn nothing useful from separate parametenasgs for each group. Rather, it
is better to pool all the data and obtain one egenfor the general population.

Posterior Probabilies of Individual Types
Given parameter estimata?s,fs), Bayes theorem allows us to compute the

posterior probability that any given individualtygpen, denoteda ﬁi .

N K N
ol =P (X |5’Bn)/k§gxka<i(xi IsBk) (7)

wherex; stands for the choices of individual i over a# tpames. Stahl and Wilson
(1995) show how to modify this formula to accoumt the uncertainty inherent in the
parameter estimates. They also find that 38 gdat8icipants in their experiments

can be identified with one type (i.e.ﬁi > 90% for some n). We suggest that this

would hardly have been the case if the level-n rhagee not capturing a significant
part of the true data generating process.

Constancy of Types

The mixture model discussed and estimated asstimaean individual is one
type for all situations he/she faces. The abosaltgon the posterior probabilites
supports that assumption. However, we need toidenalternatives to obtain a more
rigorous conclusion. One alternative is the hypstbithat an individual draws his
type from the population of types (characertizedH®uu's) independently for each
game, which implicitly entails that all individuadseex antealike. This ex ante
homoegeneity hypothesis is strongly rejected bydatia.

Consider instead the hypothesis that a typedividual is highly likely to
behave in the typical way, but with some small piality can behave like another
type. Specifically, suppose that with probabi(itye) the individual behaves like a
typek, but with probabilitye is equally likely to behave like any type. Foe tBtahl-
Wilson (1995) data, we found a statistically sigraht improvement in the
maximized log-likelihood with an estimate ©f= 0.05. In other words, individuals
appear to be true to one type of behavior 95%etithe, and otherwise tremble to
other types of behavior. Since the level-0 typeaid of the model, not surprisingly,
allowing type trembles lowers the estimated praparof the population that is type-
0. Another attractive feature of this type-tremivlixture model is that it feeds easily
into the Rule Learning framework of Stahl (200002
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Equivalent Mixture Models

For any distribution of behavioR( x|s), there are obviously uncountably

many ways to represent that distribution as a mextnodel, eq(1). All of these are
equivalent mixture models, and as such none caajbeted in favor of any other.
Does this fact mean that mixture models are nosifi@ble and hence unworthy of
scientific research? The answer is no for thresames.

First, the true data generating process may btama of types, in which
case, clever ways of isolating subpopulations pésywould lead to falsifiable
predictions. Second, representing the data gengnatocess as a mixture is a
constructive approach that starts with archetypesaggregates to population
behavior. This process does produce falsifiabfelyeses about the constituent
types, and also provides a practical means of nggkiadiction for novel situations.
Third, the curse of dimensionality prevents us frotaining a full characertization
of P(x]|s), while the mixture model allows us to construcaaproximation from

simple constituent types.

Furthermore, when faced with two competing mixtnedels, it is always
possible to create an encompassing model and sssdnieypothesis tesing to select
the best model. See, for example, Haruvy, StathMditson (1998).

Individual versus Population Models

While psychologists are primarily interested ia thiehavior of individuals
(even in social settings), other social scienssish as economists and sociologists are
more interested in aggregate population behaviodeed, in many applications, the
economist or sociologist may have only aggregata. dalthough theoretically
models of individual behavior can be aggregatearéoluce models of population
behavior, there are often informational and comjiutal constraints to exact
aggregation. For example, because each indivithsh unique history at any point
in a repeated game, exact aggregation must kedpdfall these unique histories,
which grow in number exponentially with time. Mdslevhich entail integration over
possible histories can be computationally infeasiblThere is also the information
conservation principle which states that a giveangga of data contains only so much
information - if you use that data to find the bigstor models of individual behavior,
the information gained will not give you the beastdr models of population
behavior.

The mixture models discussed above can be appliedtraightforward
manner to population data. The only difference ithe construction of the likelihood
function for the data. In an individual model, dmst computes the likelihood of the
behavior of each individual for all the games bydya product of probabilities over
the games), then sums these type-conditional fikelis, and finally takes the product
of these summed likelihoods over all individualis.a population model, one first
computes the sum of the type-conditional probéiulishoice functions for each
game, then computes the multinomial probabilityhef observed aggregate choices
using the summed probabilities, and finally takesgroduct of these multinomial
likelihoods over all the games. The latter modedsinot impose the restriction that
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an individual's behavior is of one type for all gsn Since the likelihood functions
are different, the maximume-likelihood estimatesh&f individual model will differ
from the maximume-likelihood estimates of the popiolamodel.

Conclusion

Human behavior is often multimodal, so we needtimoldal models to
represent and predict such heterogeneous behaki@ mixture model is ideally
suited for this purpose. The major challenge esgibecification of constituent
subpopulation types. In accordance with the sifiembethod, we advocate theory-
based hypothesis generation and testing. Sindeetstemixture model at any point in
time will be an approximation of the true data getiag process, there will always be
the possibility of discovering a better approxiroati
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